在(x-2)5
2
+y)4的展開式中,x3y2的系數(shù)為
 
考點:二項式系數(shù)的性質(zhì)
專題:計算題,二項式定理
分析:利用二項展開式的通項公式,可得結(jié)論.
解答: 解:(x-2)5
2
+y)4的展開式中,x3y2的系數(shù)為
C
2
5
•(-2)2
C
2
4
•(
2
)2
=480.
故答案為:480.
點評:二項展開式的通項公式是解決二項展開式的特定項問題的工具.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

集合A={α|α=
6
,k∈Z},B={β|β=
3
+
π
6
,n∈Z}的關(guān)系是(  )
A、A?BB、A?B
C、A⊆BD、A=B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|log5(1-x)|(x<1)
-(x-2)2+2(x≥1)
,則關(guān)于x的方程f(|x|)=a的實數(shù)個數(shù)不可能為(  )
A、3個B、4個C、5個D、6個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)與g(x)是定義在同一區(qū)間D上的兩個函數(shù),若?x0∈D,使得|f(x0)-g(x0)|≤1,則稱f(x)和g(x)是D上的“接近函數(shù)”,D稱為“接近區(qū)間”;若?x∈D,都有|f(x)-g(x)|>1,則稱f(x)和g(x)是D上的“遠(yuǎn)離函數(shù)”,D稱為“遠(yuǎn)離區(qū)間”.給出以下命題:
①f(x)=x2+1與g(x)=x2+
3
2
是(-∞,+∞)上的“接近函數(shù)”;
②f(x)=x2-3x+4與g(x)=2x-3的一個“遠(yuǎn)離區(qū)間”可以是[2,3];
③f(x)=
1-x2
和g(x)=-x+b(b>
2
)是(-1,1)上的“接近函數(shù)”,則
2
<b≤
2
+1;
④若f(x)=
lnx
x
+2ex與g(x)=x2+a+e2(e是自然對數(shù)的底數(shù))是[1,+∞)上的“遠(yuǎn)離函數(shù)”,則a>1+
2
e

其中的真命題有
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)工作需要,現(xiàn)從4名女教師,a名男教師中選3名教師組成一個援川團(tuán)隊,其中a=
4
0
5
8
xdx,要求團(tuán)隊中男、女教師都有,則不同的組隊方案種數(shù)為( 。
A、140B、100
C、80D、70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若執(zhí)行如圖的程序框圖,則輸出的k值是( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(x-1)5=a5(x+1)5+a4(x+1)4+a3(x+1)3+a2(x+1)2+a1(x+1)+a0,則a1+a2+a3+a4+a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知半徑為2的定圓C外一定點A,且AC=4,在圓上任取一點P,以AP為一邊逆時針作等邊△APQ,當(dāng)P在圓上運動時,建立適當(dāng)?shù)臉O坐標(biāo)系,求點Q軌跡的極坐標(biāo)方程,并轉(zhuǎn)化為直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足a2+a3+a4=28,a3+2是a2,a4的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=anlog2an,sn=b1+b2+…+bn,求sn-n•2n+1+50<0成立的正整數(shù)n的最小值.

查看答案和解析>>

同步練習(xí)冊答案