【題目】已知2件次品和3件正品放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機(jī)檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時(shí)檢測結(jié)果.

1求第一次檢測出的是次品且第二次檢測出的是正品的概率;

2已知每檢測一件產(chǎn)品需要費(fèi)用100元,設(shè)X表示直到檢測出2件次品或者檢測出3件正品時(shí)所需要的檢測費(fèi)用(單位:元),求X的分布列.

【答案】(1);(2)見解析.

【解析】試題分析:

(1)由古典概型公式可得第一次檢測出的是次品且第二次檢測出的是正品的概率是;

(2)由題意可知X的可能取值為200,300,400,據(jù)此求解分布列即可.

試題解析:

(1)第一次檢測出的是次品且第二次檢測出的是正品為事件A,

P(A).

(2)X的可能取值為200,300400.

P(X200),

P(X300),

P(X400)1P(X200)P(X300)1.

所以,X的分布列為:

X

200

300

400

P

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次考試中,語文成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如下:

(Ⅰ)如果成績大于135的為特別優(yōu)秀,隨機(jī)抽取的500名學(xué)生在本次考試中語文、數(shù)學(xué)成績特別優(yōu)秀的大約各多少人?(假設(shè)數(shù)學(xué)成績在頻率分布直方圖中各段是均勻分布的)

(Ⅱ)如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(Ⅰ)中至少有一科成績特別優(yōu)秀的同學(xué)中隨機(jī)抽取3人,設(shè)3人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望;

(Ⅲ)根據(jù)以上數(shù)據(jù),是否有99%的把握認(rèn)為語文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.

(附公及表)

①若,則, ;

;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測量產(chǎn)品中微量元素的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):

當(dāng)產(chǎn)品中的微量元素滿足時(shí),該產(chǎn)品為優(yōu)等品

(1)若甲廠生產(chǎn)的產(chǎn)品共98件,用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量;

(2)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合.對于, ,定義之間的距離為

(Ⅰ)寫出中的所有元素,并求兩元素間的距離的最大值;

(Ⅱ)若集合滿足: ,且任意兩元素間的距離均為2,求集合中元素個(gè)數(shù)的最大值并寫出此時(shí)的集合;

(Ⅲ)設(shè)集合, 中有個(gè)元素,記中所有兩元素間的距離的平均值為,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

1)求的值;

2)判斷函數(shù)的單調(diào)性并證明;

3)若對任意的,不等式恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),且離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于、兩點(diǎn),以為對角線作正方形,記直線軸的交點(diǎn)為,問、兩點(diǎn)間距離是否為定值?如果是,求出定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)滿足

1)求函數(shù)的解析式;

2)若函數(shù),是否存在實(shí)數(shù)使得的最小值為0?若存在,求出的值;若不存在,說明理由;

3)若函數(shù),是否存在實(shí)數(shù),使函數(shù)上的值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校組織的“共筑中國夢”競賽活動(dòng)中,甲、乙兩班各有6名選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖,為了增加結(jié)果的神秘感,主持人故意沒有給出甲、乙兩班最后一位選手的成績,只是告知大家,如果某位選手的成績高于90分(不含90分),則直接“晉級”.

(1)求乙班總分超過甲班的概率;

(2)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分,

請你從平均分和方差的角度來分析兩個(gè)班的選手的情況;

主持人從甲乙兩班所有選手成績中分別隨機(jī)抽取2個(gè),記抽取到“晉級”選手的總?cè)藬?shù)為,求的分

布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】女共名同學(xué)從左至右排成一排合影,要求左端排男同學(xué),右端排女同學(xué),且女同學(xué)至多有人排在一起,則不同的排法種數(shù)為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案