(本小題滿分12分)化簡或求值:
(1) 
(2)。

解:(1)原式=
=2×22×33+2 — 7— 2+ 1 ="210   "
(2)。解:分子=;
分母=原式=1。

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某化工廠生產的某種化工產品,當年產量在150噸至250噸之間時,其生產的總成本(萬元)與年產量(噸)之間的函數(shù)關系式近似地表示為.問:(1)每噸平均出廠價為16萬元,年產量為多少噸時,可獲得最大利潤?并求出最大利潤;
(2)年產量為多少噸時,每噸的平均成本最低?并求出最低成本。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(理科)已知函數(shù)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零點,求實數(shù)a的取值范圍;
(Ⅱ)當a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=f(x)(x∈[t,4])的值域為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t?若存在,求出t的值;若不存在,請說明理由(注:區(qū)間[p,q]的長度為q-p).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)某企業(yè)生產甲、乙兩種產品, 根據(jù)市場調查與預測, 甲產品
的利潤與投資成正比, 其關系如圖1, 乙產品的利潤與投資的算術平方根成正比, 其關系如
圖2 (注: 利潤與投資的單位: 萬元).
(Ⅰ) 分別將甲、乙兩種產品的利潤表示為投資的函數(shù)關系式;
(Ⅱ) 該企業(yè)籌集了100萬元資金投入生產甲、乙兩種產品, 問: 怎樣分配這100萬元資金, 才能使企業(yè)獲得最大利潤, 其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)已知f(x)是定義在[—1,1]上的奇函數(shù),且f (1)=1,若m,n∈[—
1,1],m+n≠0時有
(1)判斷f (x)在[—1,1]上的單調性,并證明你的結論;
(2)解不等式:
(3)若f (x)≤對所有x∈[—1,1],∈[—1,1]恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分)
已知函數(shù) )
(1)若函數(shù)有最大值,求實數(shù)a的值;  (2)解不等式 (a∈R).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

函數(shù)的定義域為開區(qū)間,導函數(shù)內的圖象如圖所示,則函數(shù)在開區(qū)間內有極小值點(  )

A.個 B.個 C.個 D.個 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知函數(shù)在區(qū)間上單調遞減,則的最大值是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

定義在R上的函數(shù),若對任意,都有,則稱f(x)為“H函數(shù)”,給出下列函數(shù):①;②;③;④其中是“H函數(shù)”的個數(shù)為

A.1 B.2 C.3 D.4

查看答案和解析>>

同步練習冊答案