【題目】已知函數(shù)fx,

1)討論函數(shù)fx)的單調(diào)性;

2)證明:a1時(shí),fx+gx)﹣(1lnxe

【答案】1)詳見(jiàn)解析;(2)證明見(jiàn)解析

【解析】

1)對(duì)求導(dǎo)后,再對(duì)a分類討論即可得出函數(shù)的單調(diào)性.

2a1時(shí),將所證不等式轉(zhuǎn)化為exex+1,Fx)=exex+1,Gx,分別根據(jù)導(dǎo)數(shù)求出的最小值和的最大值即可證明不等式成立.

1fxalnx,(x∈(0,+∞)).

當(dāng)a≤0時(shí),0,函數(shù)fx)在x∈(0+∞)上單調(diào)遞減.

a0時(shí),由,,由,

所以函數(shù)在(0,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增.

2)證明:a1時(shí),要證fx+gx)﹣(1lnxe

即要證:lnxe0exex+1x∈(0,+∞).

Fx)=exex+1,Fx)=exe,

當(dāng)x∈(0,1)時(shí),F′(x)<0,此時(shí)函數(shù)Fx/span>)單調(diào)遞減;

當(dāng)x∈(1,+∞)時(shí),F′(x)>0,此時(shí)函數(shù)Fx)單調(diào)遞增.

可得x1時(shí),函數(shù)Fx)取得最小值,F1)=1

Gx,Gx,

當(dāng)時(shí),,此時(shí)為增函數(shù),

當(dāng)時(shí)。,此時(shí)為減函數(shù)

所以xe時(shí),函數(shù)Gx)取得最大值,Ge)=1.

x1xe不同時(shí)取得,因此Fx)>Gx),即exex+1x∈(0,+∞).

故原不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)討論函數(shù)的導(dǎo)函數(shù)的單調(diào)性;

(2)若函數(shù)處取得極大值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=2cos2x+ax2

1)當(dāng)a1時(shí),求fx)的導(dǎo)函數(shù)上的零點(diǎn)個(gè)數(shù);

2)若關(guān)于x的不等式2cos2sinx+a2x2afx)在(﹣,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線是過(guò)點(diǎn)的動(dòng)直線,當(dāng)與圓相切時(shí),同時(shí)也和拋物線相切.

1)求拋物線的方程;

2)直線與拋物線交于不同的兩點(diǎn),與圓交于不同的兩點(diǎn)A、B,面積為,面積為,當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)x[1,e]時(shí),fx)的最小值為_____;設(shè)gx)=[fx]2fx+a若函數(shù)gx)有6個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“未來(lái)肯定是非接觸的,無(wú)感支付的方式將成為主流,這有助于降低交互門(mén)檻”.云從科技聯(lián)合創(chuàng)始人姚志強(qiáng)告訴南方日?qǐng)?bào)記者.相對(duì)于主流支付方式二維碼支付,刷臉支付更加便利,以前出門(mén)一部手機(jī)解決所有,而現(xiàn)在連手機(jī)都不需要了,畢竟,手機(jī)支付還需要攜帶手機(jī),打開(kāi)二維碼也需要時(shí)間和手機(jī)信號(hào).刷臉支付將會(huì)替代手機(jī),成為新的支付方式.某地從大型超市門(mén)口隨機(jī)抽取50名顧客進(jìn)行了調(diào)查,得到了如表列聯(lián)表:

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為使用刷臉支付與性別有關(guān)?

2)從參加調(diào)查且使用刷臉支付的顧客中隨機(jī)抽取2人參加抽獎(jiǎng)活動(dòng),抽獎(jiǎng)活動(dòng)規(guī)則如下:“一等獎(jiǎng)”中獎(jiǎng)概率為0.25,獎(jiǎng)品為10元購(gòu)物券張(,且),“二等獎(jiǎng)”中獎(jiǎng)概率0.25,獎(jiǎng)品為10元購(gòu)物券兩張,“三等獎(jiǎng)”中獎(jiǎng)概率0.5,獎(jiǎng)品為10元購(gòu)物券一張,每位顧客是否中獎(jiǎng)相互獨(dú)立,記參與抽獎(jiǎng)的兩位顧客中獎(jiǎng)購(gòu)物券金額總和為元,若要使的均值不低于50元,求的最小值.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著新高考改革的不斷深入,高中學(xué)生生涯規(guī)劃越來(lái)越受到社會(huì)的關(guān)注.一些高中已經(jīng)開(kāi)始嘗試開(kāi)設(shè)學(xué)生生涯規(guī)劃選修課程,并取得了一定的成果.如表為某高中為了調(diào)查學(xué)生成績(jī)與選修生涯規(guī)劃課程的關(guān)系,隨機(jī)抽取50名學(xué)生的統(tǒng)計(jì)數(shù)據(jù).

成績(jī)優(yōu)秀

成績(jī)不夠優(yōu)秀

總計(jì)

選修生涯規(guī)劃課

15

10

25

不選修生涯規(guī)劃課

6

19

25

總計(jì)

21

29

50

1)根據(jù)列聯(lián)表運(yùn)用獨(dú)立性檢驗(yàn)的思想方法能否有99%的把握認(rèn)為“學(xué)生的成績(jī)是否優(yōu)秀與選修生涯規(guī)劃課有關(guān)”,并說(shuō)明理由;

2)現(xiàn)用分層抽樣的方法在選修生涯規(guī)劃課的成績(jī)優(yōu)秀和成績(jī)不夠優(yōu)秀的學(xué)生中隨機(jī)抽取5名學(xué)生作為代表,從5名學(xué)生代表中再任選2名學(xué)生繼續(xù)調(diào)查,求這2名學(xué)生成績(jī)至少有1人優(yōu)秀的概率.

參考附表:

PK2k

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

參考公式,其中na+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),已知方程為常數(shù))在上恰有三個(gè)根,分別為,下述四個(gè)結(jié)論:

①當(dāng)時(shí),的取值范圍是;

②當(dāng)時(shí),上恰有2個(gè)極小值點(diǎn)和1個(gè)極大值點(diǎn);

③當(dāng)時(shí),上單調(diào)遞增;

④當(dāng)時(shí),的取值范圍為,且

其中正確的結(jié)論個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會(huì)影響生二孩的意愿,現(xiàn)隨機(jī)抽取某地200戶家庭進(jìn)行調(diào)查統(tǒng)計(jì).200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.

1)完成下列列聯(lián)表,并判斷能否有95%的把握認(rèn)為是否生二孩與頭胎的男女情況有關(guān);

生二孩

不生二孩

合計(jì)

頭胎為女孩

60

頭胎為男孩

合計(jì)

200

2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進(jìn)一步了解情況,在抽取的7戶中再隨機(jī)抽取4戶,求抽到的頭胎是女孩的家庭戶數(shù)的分布列及數(shù)學(xué)期望.

附:

0.15

0.05

0.01

0.001

2.072

3.841

6.635

10.828

(其中.

查看答案和解析>>

同步練習(xí)冊(cè)答案