【題目】已知函數(shù).

1)若在區(qū)間內(nèi)單調(diào)遞增,求的取值范圍;

2)若在區(qū)間內(nèi)存在極大值,證明:.

【答案】1;(2)證明見解析

【解析】

1)由題意得在區(qū)間內(nèi)恒成立,即在區(qū)間內(nèi)恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出最小值即可得到結(jié)果;(2)構(gòu)造函數(shù),則,由此可得出函數(shù)的單調(diào)區(qū)間,利用零點存在性定理可得函數(shù)的零點所在區(qū)間:,則可得函數(shù)的單調(diào)性,從而得到極大值,結(jié)合條件和基本不等式即可證明結(jié)論.

1)由題意得在區(qū)間內(nèi)恒成立,

在區(qū)間內(nèi)恒成立,

,則.

時,在區(qū)間內(nèi)單調(diào)遞減;

時,,在區(qū)間內(nèi)單調(diào)遞增,故

所以,所以的取值范圍為

2)由(1)知當時,在區(qū)間內(nèi)單調(diào)遞增,則不存在極大值.

時,,.

,令,則.

,則,

則易知函數(shù)在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增.

,

(易證明),

故存在,使得,

存在,使得,

則當時,;當;當時,

在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增,

所以當時,取得極大值,即.

,得,

,得,

,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,其中為常數(shù).

1)證明: ;

2)是否存在,使得為等差數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的方程為,過點的直線的參數(shù)方程為為參數(shù)).

(Ⅰ)求直線的普通方程與曲線的直角坐標方程;

(Ⅱ)若直線與曲線交于兩點,求的值,并求定點,兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)的時間的統(tǒng)計數(shù)據(jù)如下表:

超過1小時

不超過1小時

20

8

12

m

1)求m,n;

2)能否有95多的把握認為該校學(xué)生一周參加社區(qū)服務(wù)時間是否超過1小時與性別有關(guān)?

3)以樣本中學(xué)生參加社區(qū)服務(wù)時間超過1小時的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機調(diào)查6名學(xué)生,試估計6名學(xué)生中一周參加社區(qū)服務(wù)時間超過1小時的人數(shù).

附:

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九世紀末:法國學(xué)者貝特朗在研究幾何概型時提出了“貝特朗悖論”,即“在一個圓內(nèi)任意選一條弦,這條弦的弦長長于這個圓的內(nèi)接等邊三角形邊長的概率是多少?”貝特朗用“隨機半徑”“隨機端點”“隨機中點”三個合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強烈地刺激了概率論基礎(chǔ)的嚴格化.已知“隨機端點”的方法如下:設(shè)為圓上一個定點,在圓周上隨機取一點,連接,所得弦長大于圓的內(nèi)接等邊三角形邊長的概率.則由“隨機端點”求法所求得的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為考查某種疫苗預(yù)防疾病的效果,進行動物實驗,得到統(tǒng)計數(shù)據(jù)如下:

未發(fā)病

發(fā)病

總計

未注射疫苗

20

注射疫苗

30

總計

50

50

100

現(xiàn)從所有試驗動物中任取一只,取到“注射疫苗”動物的概率為.

(1)求列聯(lián)表中的數(shù)據(jù),,的值;

(2)判斷疫苗是否有效?

(3)能夠有多大把握認為疫苗有效?

(參考公式

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)(2017·長春市二模)如圖,在四棱錐中,底面是菱形,平面,,點分別為中點.

(1)求證:直線平面;

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積=(弦+2.弧田(如圖),由圓弧和其所對弦所圍成,公式中指圓弧所對弦長,等于半徑長與圓心到弦的距離之差.

按照上述經(jīng)驗公式計算所得弧田面積與其實際面積之間存在誤差.現(xiàn)有圓心角為,弦長等于9米的弧田.

1)計算弧田的實際面積;

2)按照《九章算術(shù)》中弧田面積的經(jīng)驗公式計算所得結(jié)果與(1)中計算的弧田實際面積相差多少平方米?(結(jié)果保留兩位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在上的函數(shù),若存在正常數(shù),使得對一切均成立,則稱控制增長函數(shù)。在以下四個函數(shù)中:①控制增長函數(shù)的有(空格上填入函數(shù)代碼)________.

查看答案和解析>>

同步練習(xí)冊答案