【題目】已知函數(shù),.
(1)若不等式對任意的恒成立,求實(shí)數(shù)的取值范圍;
(2)記表示中的最小值,若函數(shù)在內(nèi)恰有一個(gè)零點(diǎn),求實(shí)的取值范圍.
【答案】(1);(2)
【解析】
(1)利用分離參數(shù),并構(gòu)造新的函數(shù),利用導(dǎo)數(shù)判斷的單調(diào)性,并求最值,可得結(jié)果.
(2)利用對的分類討論,可得,然后判斷函數(shù)單調(diào)性以及根據(jù)零點(diǎn)存在性定理,可得結(jié)果.
(1)由,得,
令,
當(dāng)時(shí),
,,;
當(dāng)時(shí),
,,,
∴函數(shù)在上遞減,在上遞增,
,,
∴實(shí)數(shù)的取值范圍是
(2) ①由(1) 得當(dāng)時(shí),,
,
,
函數(shù)在內(nèi)恰有一個(gè)零點(diǎn),符合題意
②當(dāng)時(shí),
i.若,,
,
故函數(shù)在內(nèi)無零點(diǎn)
ii.若,,,
,
不是函數(shù)的零點(diǎn);
iii.若時(shí),,
故只考慮函數(shù)在的零點(diǎn),,
若時(shí),
,∴函數(shù)在上單調(diào)遞增,
,
,
∴函數(shù)在上恰有一個(gè)零點(diǎn)
若時(shí),
, ∴函數(shù)在上單調(diào)遞減,
,∴函數(shù)在上無零點(diǎn),
若時(shí),
,,
∴函數(shù)在上遞減,在上遞增,
要使在上恰有一個(gè)零點(diǎn), 只需,
.
綜上所述,實(shí)數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是(為參數(shù)).
(1)求直線和曲線的普通方程;
(2)設(shè)直線和曲線交于兩點(diǎn),求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,曲線C的參數(shù)方程是,(為參數(shù)).
(1)求直線被曲線C截得的弦長;
(2)從極點(diǎn)作曲線C的弦,求各弦中點(diǎn)軌跡的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,已知平面QBC與直線PA均垂直于所在平面,且PA=AB=AC.
(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)若,求二面角Q-PB-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《基礎(chǔ)教育課程改革綱要(試行)》將“具有良好的心理素質(zhì)”列入新課程的培養(yǎng)目標(biāo).為加強(qiáng)心理健康教育工作的開展,不斷提高學(xué)生的心理素質(zhì),九江市某校高二年級開設(shè)了《心理健康》選修課,學(xué)分為2分.學(xué)校根據(jù)學(xué)生平時(shí)上課表現(xiàn)給出“合格”與“不合格”兩種評價(jià),獲得“合格”評價(jià)的學(xué)生給予50分的平時(shí)分,獲得“不合格”評價(jià)的學(xué)生給予30分的平時(shí)分,另外還將進(jìn)行一次測驗(yàn).學(xué)生將以“平時(shí)分×40%+測驗(yàn)分×80%”作為“最終得分”,“最終得分”不少于60分者獲得學(xué)分.
該校高二(1)班選修《心理健康》課的學(xué)生的平時(shí)份及測驗(yàn)分結(jié)果如下:
測驗(yàn)分 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
平時(shí)分50分人數(shù) | 0 | 3 | 4 | 4 | 2 | ||
平時(shí)分30分人數(shù) | 1 | 0 | 0 |
(1)根據(jù)表中數(shù)據(jù)完成如下2×2列聯(lián)表,并分析是否有95%的把握認(rèn)為這些學(xué)生“測驗(yàn)分是否達(dá)到60分”與“平時(shí)分”有關(guān)聯(lián)?
選修人數(shù) | 測驗(yàn)分 達(dá)到60分 | 測驗(yàn)分 未達(dá)到60分 | 合計(jì) |
平時(shí)分50分 | |||
平時(shí)分30分 | |||
合計(jì) |
(2)若從這些學(xué)生中隨機(jī)抽取1人,求該生獲得學(xué)分的概率.
附:,其中
0.1 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)a=時(shí),試判斷函數(shù)f(x)的單調(diào)性;
(2)設(shè)g(x)=,若g(x)有唯一零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市調(diào)查機(jī)構(gòu)在某設(shè)置過街天橋的路口隨機(jī)調(diào)查了110人準(zhǔn)備過馬路的交通參與者對跨越護(hù)欄和走過街天橋的看法,得到如下列聯(lián)表:
男 | 女 | 合計(jì) | |
走過街天橋 | 40 | 20 | 60 |
跨越護(hù)欄 | 20 | 30 | 50 |
合計(jì) | 60 | 50 | 110 |
附:.
0.050 | 0.010 | 0.001 | |
K | 3.841 | 6.635 | 10.828 |
則可以得到正確的結(jié)論是( )
A.有99%以上的把握認(rèn)為“選擇過馬路的方式與性別有關(guān)”
B.有99%以上的把握認(rèn)為“選擇過馬路的方式與性別無關(guān)”
C.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“選擇過馬路的方式與性別有關(guān)”
D.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“選擇過馬路的方式與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐P﹣ABC中,AC⊥BC,AC=BC=2,PA=PB=PC=3,O是AB中點(diǎn),E是PB中點(diǎn).
(1)證明:平面PAB⊥平面ABC;
(2)求點(diǎn)B到平面OEC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com