【題目】對于給定數(shù)列,如果存在實常數(shù)使得對于任意都成立,我們稱數(shù)列是“M類數(shù)列”.
(1)若,數(shù)列是否為“M類數(shù)列”?若是,指出它對應(yīng)的實常數(shù);若不是,請說明理由;
(2)證明:若數(shù)列是“M類數(shù)列”,則數(shù)列也是“M類數(shù)列”.
【答案】(1)數(shù)列是“M類數(shù)列”,對應(yīng)的實常數(shù)分別為2,0(2)見解析
【解析】
(1)由,可得,可得數(shù)列是“M類數(shù)列”,對應(yīng)的實常數(shù)分別為1,2.同理數(shù)列是“M類數(shù)列”.(2)利用“M類數(shù)列”的定義即可證明;
(1),.
故數(shù)列是“M類數(shù)列”,對應(yīng)的實常數(shù)分別為1,2.
因為,則有,
故數(shù)列是“M類數(shù)列”,對應(yīng)的實常數(shù)分別為2,0
(2)若數(shù)列是“M類數(shù)列”,則存在實常數(shù),使得對于任意都成立,且有對于任意都成立,因此對于任意都成立.故數(shù)列也是“M類數(shù)列”
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓中心在坐標原點,是它的兩個頂點,直線與AB相交于點D,與橢圓相交于E、F兩點.
(Ⅰ)若,求的值;
(Ⅱ)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市調(diào)研考試后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認為“成績與班級有關(guān)系”;
參考公式與臨界值表:.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,已知圓圓心為,過點且斜率為的直線與圓相交于不同的兩點、.
()求的取值范圍;
()是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列是各項均為正數(shù)的等比數(shù)列,設(shè).
(1)數(shù)列是否為等比數(shù)列?證明你的結(jié)論;
(2)設(shè)數(shù)列的前項和分別為.若,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),證明:函數(shù)有兩個零點,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和滿足:,,,其中為實數(shù),為正整數(shù).
(Ⅰ)證明:對任意的實數(shù),數(shù)列不是等比數(shù)列;
(Ⅱ)證明:當時,數(shù)列是等比數(shù)列;
(Ⅲ)設(shè)為數(shù)列的前項和,是否存在實數(shù),使得對任意正整數(shù),都有?若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個不同的單位向量與之間滿足關(guān)系:,其中.
(1)若,求的解析式;
(2)能否和垂直?能否和平行?若不能,則說明理由;若能,則求出對應(yīng)的k值;
(3)求與夾角的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com