對于上可導的任意函數(shù),若滿足,則必有(     )
A.B.
C.D.
D
解:由圖像可知,
當x≥1時,f′(x)≥0,函數(shù)f(x)在(1,+∞)上是增函數(shù);
當x<1時,f′(x)≤0,f(x)在(-∞,1)上是減函數(shù),
故當x=1時f(x)取得最小值,即有
f(0)≥f(1),f(2)≥f(1),
∴f(0)+f(2)≥2f(1).,故選擇D
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數(shù)x只有一個.
(1)求函數(shù)f(x)的表達式;
(2)若數(shù)列{an}滿足a1,an+1=f(an),bn-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在函數(shù)概念的發(fā)展過程中,德國數(shù)學家狄利克雷(Dirichlet,1805——1859)功不可沒。19世紀,狄利克雷定義了一個“奇怪的函數(shù)”:,這個函數(shù)后來被稱為狄利克雷函數(shù)。下面對此函數(shù)性質的描述中不正確的是:(  )
A.它沒有單調(diào)性B.它是周期函數(shù),且沒有最小正周期
C.它是偶函數(shù)D.它有函數(shù)圖像

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是定義在上恒不為零的函數(shù),對任意的實數(shù),都有,若,,(),則數(shù)列的前項和的最小值是(    )
A.B.2C.D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

對于函數(shù)定義域內(nèi)的任意,有以下結論:
;②;③; ④;⑤.
時,上述結論中,正確的是      (填入你認為正確的所有結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)是定義在R上的奇函數(shù),且當時,,則函數(shù)處的切線方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義符號函數(shù),設 
,其中=, =, 若,則實數(shù)的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的反函數(shù)是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

,則_______________.

查看答案和解析>>

同步練習冊答案