【題目】如圖1.四邊形是邊長(zhǎng)為10的菱形,其對(duì)角線,現(xiàn)將沿對(duì)角線折起,連接,形成如圖2的四面體,則異面直線與所成角的大小為______.在圖2中,設(shè)棱的中點(diǎn)為,的中點(diǎn)為,若四面體的外接球的球心在四面體的內(nèi)部,則線段長(zhǎng)度的取值范圍為______.
【答案】
【解析】
連接、,利用線面垂直的判定定理可求異面直線與所成角的大。幌雀鶕(jù)外接球的性質(zhì)確定出四面體的外接球球心,利用勾股定理,求出和,進(jìn)而求出,借助三角函數(shù)的取值范圍以及,即可求出線段長(zhǎng)度的取值范圍.
連接、,四邊形是菱形,為棱的中點(diǎn),
所以,,
又,
則平面,
由平面,
則,即異面直線與所成角的大小為.
由四邊形是邊長(zhǎng)為10的菱形,其對(duì)角線,
則,,
是的外心,在中線中,
設(shè)過(guò)點(diǎn)的直線平面,易知平面,
同理是的外心,在中線上,
設(shè)過(guò)點(diǎn)的直線平面,易知平面,
由對(duì)稱(chēng)性易知、的交點(diǎn)在直線上,
根據(jù)外接球的性質(zhì),點(diǎn)為四面體的外接球的球心,
,,
,解得,
令,根據(jù)題意可知,,且,
則平面,平面,則,
所以,,
,
,
又,,,
,即線段長(zhǎng)度的取值范圍為,
故答案為:;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四面體ABCD中,△ABC和△BCD均是邊長(zhǎng)為1的等邊三角形,已知四面體ABCD的四個(gè)頂點(diǎn)都在同一球面上,且AD是該球的直徑,則四面體ABCD的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市先后采用甲、乙兩種方案治理空氣污染各一年,各自隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的檢測(cè)數(shù)據(jù)進(jìn)行分析,若空氣質(zhì)量指數(shù)值在[0,300]內(nèi)為合格,否則為不合格.表1是甲方案檢測(cè)數(shù)據(jù)樣本的頻數(shù)分布表,如圖是乙方案檢測(cè)數(shù)據(jù)樣本的頻率分布直方圖.
表1:
API值 | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | 大于300 |
天數(shù) | 9 | 13 | 19 | 30 | 14 | 11 | 4 |
(1)將頻率視為概率,求乙方案樣本的頻率分布直方圖中的值,以及乙方案樣本的空氣質(zhì)量不合格天數(shù);
(2)求乙方案樣木的中位數(shù);
(3)填寫(xiě)下面2×2列聯(lián)表(如表2),并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該城市的空氣質(zhì)量指數(shù)值與兩種方案的選擇有關(guān).
表2:
甲方案 | 乙方案 | 合計(jì) | |
合格天數(shù) | _______ | _______ | _______ |
不合格天數(shù) | _______ | _______ | _______ |
合計(jì) | _______ | _______ | _______ |
附:
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的離心率是,一個(gè)頂點(diǎn)是.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),是橢圓上異于點(diǎn)的任意兩點(diǎn),且.試問(wèn):直線是否恒過(guò)一定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓的離心率為,雙曲線的漸近線與橢圓的交點(diǎn)到原點(diǎn)的距離均為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)為橢圓上的動(dòng)點(diǎn),三點(diǎn)共線,直線的斜率分別為.
(i)證明:;
(ii)若,設(shè)直線過(guò)點(diǎn),直線過(guò)點(diǎn),證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是數(shù)列1,,,…,的各項(xiàng)和,,.
(1)設(shè),證明:在內(nèi)有且只有一個(gè)零點(diǎn);
(2)當(dāng)時(shí),設(shè)存在一個(gè)與上述數(shù)列的首項(xiàng)、項(xiàng)數(shù)、末項(xiàng)都相同的等差數(shù)列,其各項(xiàng)和為,比較與的大小,并說(shuō)明理由;
(3)給出由公式推導(dǎo)出公式的一種方法如下:在公式中兩邊求導(dǎo)得:,所以成立,請(qǐng)類(lèi)比該方法,利用上述數(shù)列的末項(xiàng)的二項(xiàng)展開(kāi)式證明:時(shí)(其中表示組合數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,,,點(diǎn)是線段的中點(diǎn).
(1)證明:平面;
(2)若,,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門(mén)經(jīng)常不定期地對(duì)產(chǎn)品進(jìn)行抽查檢測(cè),現(xiàn)對(duì)某條生產(chǎn)線上隨機(jī)抽取的100個(gè)產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對(duì)比,并對(duì)每個(gè)產(chǎn)品進(jìn)行綜合評(píng)分(滿分100分),將每個(gè)產(chǎn)品所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80分及以上的產(chǎn)品為一等品.
(1)求圖中的值,并求綜合評(píng)分的中位數(shù);
(2)用樣本估計(jì)總體,視頻率作為概率,在該條生產(chǎn)線中隨機(jī)抽取3個(gè)產(chǎn)品,求所抽取的產(chǎn)品中一等品數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)是定義域?yàn)?/span>的奇函數(shù),且它的最小正周期是T,已知,.給出下列四個(gè)判斷:①對(duì)于給定的正整數(shù),存在,使得成立;②當(dāng)a時(shí),對(duì)于給定的正整數(shù),存在,使得成立;③當(dāng)時(shí),函數(shù)既有對(duì)稱(chēng)軸又有對(duì)稱(chēng)中心;④當(dāng)時(shí),的值只有0或.其中正確判斷的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com