精英家教網 > 高中數學 > 題目詳情
函數f(x)=
3-x
+log2(x+1)
的定義域為(  )
分析:
3-x≥0
x+1>0
即可求得函數f(x)=
3-x
+log2(x+1)
的定義域.
解答:解:由題意得:
3-x≥0
x+1>0
,解得-1<x≤3.
故選C.
點評:本題考查對數函數的定義域,關鍵是理解使函數成立的條件需要同時成立,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設二次函數f(x)=ax2+bx+c(a≠0)滿足條件:①當x∈R時,f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值為0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是單調函數,求k的取值范圍;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
3
sinxcosx+cos2x+a

(Ⅰ)寫出函數的最小正周期及單調遞減區(qū)間;
(Ⅱ)當x∈[-
π
6
,
π
3
]時,函數f(x)的最大值與最小值的和為
3
2
,求f(x)的解析式;
(Ⅲ)將滿足(Ⅱ)的函數f(x)的圖象向右平移
π
12
個單位,縱坐標不變橫坐標變?yōu)樵瓉淼?倍,再向下平移
1
2
,得到函數g(x),求g(x)圖象與x軸的正半軸、直線x=
π
2
所圍成圖形的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

探究函數f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定取得最小值時x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
請觀察表中值y隨x值變化的特點,完成以下的問題.
函數f(x)=x+
4
x
(x>0)在區(qū)間(0,2)上遞減;
函數f(x)=x+
4
x
(x>0)在區(qū)間
(2,0)
(2,0)
上遞增.
當x=
2
2
時,y最小=
4
4

證明:函數f(x)=x+
4
x
(x>0)在區(qū)間(0,2)遞減.
思考:(直接回答結果,不需證明)
(1)函數f(x)=x+
4
x
(x<0)有沒有最值?如果有,請說明是最大值還是最小值,以及取相應最值時x的值.
(2)函數f(x)=ax+
b
x
,(a<0,b<0)在區(qū)間
[-
b
a
,0)
[-
b
a
,0)
 和
(0,
b
a
]
(0,
b
a
]
上單調遞增.

查看答案和解析>>

科目:高中數學 來源:2013-2014學年人教版高考數學文科二輪專題復習提分訓練17練習卷(解析版) 題型:選擇題

已知函數f(x)=2sin(ωx+),xR,其中ω>0,-π<≤π.f(x)的最小正周期為6π,且當x=,f(x)取得最大值,(  )

(A)f(x)在區(qū)間[-2π,0]上是增函數

(B)f(x)在區(qū)間[-3π,-π]上是增函數

(C)f(x)在區(qū)間[3π,5π]上是減函數

(D)f(x)在區(qū)間[4π,6π]上是減函數

 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數f(x)=
3
sinxcosx+cos2x+a

(Ⅰ)寫出函數的最小正周期及單調遞減區(qū)間;
(Ⅱ)當x∈[-
π
6
,
π
3
]時,函數f(x)的最大值與最小值的和為
3
2
,求f(x)的解析式;
(Ⅲ)將滿足(Ⅱ)的函數f(x)的圖象向右平移
π
12
個單位,縱坐標不變橫坐標變?yōu)樵瓉淼?倍,再向下平移
1
2
,得到函數g(x),求g(x)圖象與x軸的正半軸、直線x=
π
2
所圍成圖形的面積.

查看答案和解析>>

同步練習冊答案