已知函數(shù)f(x)=
1+a•2x2x+b
是奇函數(shù),并且函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(1,3),
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)f(x)的值域;
(3)證明函數(shù)f(x)在(0,+∞)上單調(diào)遞減,并寫出f(x)的單調(diào)區(qū)間.
分析:法一:(1)由函數(shù)f(x)=
1+a•2x
2x+b
是奇函數(shù),并且函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(1,3),知
f(1)=3
f(-1)=-3
,由此能求出a,b.
(2)由f(x)=
1+2x
2x-1
=1+
2
2x-1
,知2x-1>-1,且2x-1≠0,知
2
2x-1
<-2
,或
2
2x-1
>0
,由此能求出f(x)的值域.
(3)在(0,+∞)上任取x1,x2,令x1<x2,利用定義法能證明函數(shù)f(x)在(0,+∞)上單調(diào)遞減,再由函數(shù)f(x)是奇函數(shù),能求出f(x)的單調(diào)減區(qū)間.
法二:(1)由f(x)是奇函數(shù),知
1+a•2x
2-x+b
+
1+a•2x
2x +b
=0
,由此能求出a,b.
(2)由y=f(x)=
1+2x
2x-1
,知2x=
y+1
y-1
>0,由此能求出f(x)的值域.
(3)在(0,+∞)上任取x1,x2,令x1<x2,利用定義法能證明函數(shù)f(x)在(0,+∞)上單調(diào)遞減,再由函數(shù)f(x)是奇函數(shù),能求出f(x)的單調(diào)減區(qū)間.
解答:解法一:(1):函數(shù)f(x)=
1+a•2x
2x+b
是奇函數(shù),并且函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(1,3),
f(1)=3
f(-1)=-3
,(3分)即
1+2a
2+b
=3
1+
a
2
1
2
+b
=-3
,(4分)
解得a=1,b=-1.經(jīng)檢驗(yàn)f(x)為奇函數(shù),
故a=1,b=-1.(5分)
(2)∵a=1,b=-1.
∴f(x)=
1+2x
2x-1
=1+
2
2x-1
,(7分)
∵2x>0,
∴2x-1>-1,且2x-1≠0,∴
2
2x-1
<-2
,或
2
2x-1
>0

∴f(x)<-1,或f(x)>1.
∴f(x)的值域?yàn)椋?∞,-1)∪(1,+∞).(10分)
(3)在(0,+∞)上任取x1,x2,令x1<x2,
則f(x2)-f(x1)=
1+2x2
2x2-1
-
1+2x1
2x1-1
=
2(2x1-2x2)
(2x2-1)(2x1-1)
,
∵0<x1<x2,
2x2-1>02x1-1>0,2x1-2x2<0
∴f(x2)-f(x1)<0,
∴函數(shù)f(x)在(0,+∞)上單調(diào)遞減
∵函數(shù)f(x)是奇函數(shù),∴f(x)在(-∞,0)上也是遞減,(15分)
∴f(x)的單調(diào)減區(qū)間為(-∞,0),(0,+∞).(16分)  
解法二:(1)∵f(x)是奇函數(shù),
∴f(-x)=-f(x),即
1+a•2x
2-x+b
+
1+a•2x
2x +b
=0
,
得(ab+1)•22x+2(a+b)•2x+ab+1=0,
ab+1=0
a+b=0
,得
a=1
b=-1
,或
a=-1
b=1
,…(3分)
又∵f(1)=3,∴
1+2a
2+b
=3
,即2a-3b=5,
∴a=1,b=-1.…(5分)
(2)∵a=1,b=-1,∴y=f(x)=
1+2x
2x-1
,∴2x=
y+1
y-1
,(7分)
∵2x>0,∴
y+1
y-1
>0
,解得y<-1,或y>1.
∴f(x)的值域?yàn)椋?∞,-1)∪(1,+∞).(10分)
(3)在(0,+∞)上任取x1,x2,令x1<x2,
則f(x2)-f(x1)=
1+2x2
2x2-1
-
1+2x1
2x1-1
=
2(2x1-2x2)
(2x2-1)(2x1-1)
,
∵0<x1<x2,
2x2-1>0,2x1-1>0,2x1-2x2<0,
∴f(x2)-f(x1)<0,
∴函數(shù)f(x)在(0,+∞)上單調(diào)遞減
∵函數(shù)f(x)是奇函數(shù),∴f(x)在(-∞,0)上也是遞減,(15分)
∴f(x)的單調(diào)減區(qū)間為(-∞,0),(0,+∞).(16分)
點(diǎn)評(píng):本題考查函數(shù)的解析式的求法,考查函數(shù)的值域的求法,考查函數(shù)的單調(diào)性的判斷.解題時(shí)要認(rèn)真審題,注意待定系數(shù)法、分離常數(shù)法、定義法和等價(jià)轉(zhuǎn)化思想、函數(shù)奇偶性的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個(gè)函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時(shí)滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個(gè)極大值點(diǎn);
②?x∈(8,+∞),f(x)>0.
則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x≥1時(shí),不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案