在直角坐標系xOy中,已知中心在原點,離心率為的橢圓E的一個焦點為圓C:x2+y2-4x+2=0的圓心.[中國

(Ⅰ)求橢圓E的方程;

(Ⅱ)設P是橢圓E上一點,過P作兩條斜率之積為的直線l1,l2.當直線l1,l2都與圓C相切時,求P的坐標.

 

【答案】

(Ⅰ)(Ⅱ),或,或,或.

【解析】(Ⅰ)由,得.故圓C的圓心為點

從而可設橢圓E的方程為其焦距為,由題設知

故橢圓E的方程為:

(Ⅱ)設點的坐標為,的斜分率分別為的方程分別為與圓相切,得,即

同理可得.

從而是方程的兩個實根,于是

      、

解得

它們滿足①式,故點P的坐標為

,或,或,或.

【點評】本題考查曲線與方程、直線與曲線的位置關系,考查運算能力,考查數(shù)形結合思想、函數(shù)與方程思想等數(shù)學思想方法.第一問根據(jù)條件設出橢圓方程,求出即得橢圓E的方程,第二問設出點P坐標,利用過P點的兩條直線斜率之積為,得出關于點P坐標的一個方程,利用點P在橢圓上得出另一方程,聯(lián)立兩個方程得點P坐標.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點,點M為C1與C2在第一象限的交點,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的點N滿足
MN
=
MF1
+
MF2
,直線l∥MN,且與C1交于A,B兩點,若
OA
OB
=0
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知點P(2cosx+1,2cos2x+2)和點Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動點P在射線OA上運動,動點Q在y軸的正半軸上運動,△POQ的面積為2
3

(1)求線段PQ中點M的軌跡C的方程;
(2)R1,R2是曲線C上的動點,R1,R2到y(tǒng)軸的距離之和為1,設u為R1,R2到x軸的距離之積.問:是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
(1)求橢圓C的方程;
(2)設橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案