分析 (1)由a3=5,S3=9聯(lián)立方程求出數(shù)列的首項和公差,然后求數(shù)列{an}的通項公式;
(2)根據(jù)T3=13,b3=a5,求出公比和首項,求出Tn即可;
(3)求出an和bn,從而求出Sn即可.
解答 解:(1)$\left\{\begin{array}{l}{a_3}={a_1}+2d=5\\{S_3}=3{a_1}+\frac{3×2}{2}d=9\end{array}\right.$解得$\left\{\begin{array}{l}{a_1}=1\\ d=2\end{array}\right.$,
∴an=a1+(n-1)d=2n-1.
(2)由上可得,b3=a5=9,T3=13,所以公比q=3,
從而,b1=1,
所以${T_n}=\frac{{{b_1}(1-{q^n})}}{1-q}$=$\frac{{1×(1-{3^n})}}{1-3}=\frac{1}{2}({3^n}-1)$.
(3)由(1)知,an=2n-1.
∴${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
∴${S_n}={b_1}+{b_2}+…+{b_n}=\frac{1}{2}[{(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})}]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$.
點評 本題主要考查等比數(shù)列和等差數(shù)列的通項公式以及前n項和公式,要求熟練掌握相應(yīng)的公式.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | $\frac{3}{4}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{15}{16}$ | B. | -$\frac{7}{16}$ | C. | $\frac{7}{16}$ | D. | $\frac{15}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 不存在 | B. | 不能確定 | C. | 一個 | D. | 兩個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com