【題目】為了調(diào)查觀眾對(duì)某電視劇的喜愛程度,某電視臺(tái)在甲乙兩地隨機(jī)抽取了8名觀眾做問卷調(diào)查,得分結(jié)果如圖所示:

(1)計(jì)算甲地被抽取的觀眾問卷得分的中位數(shù)和乙地被抽取的觀眾問卷得分的平均數(shù);

(2)若從乙地被抽取的8名觀眾中邀請(qǐng)2人參加調(diào)研,求參加調(diào)研的觀眾中恰有1人的問卷調(diào)查成績(jī)?cè)?0分以上(含90分)的概率.

【答案】(1),.(2).

【解析】試題分析:(1)根據(jù)莖葉圖計(jì)算可得中位數(shù)及平均數(shù);(2)寫出任選兩人的所有情況,共有28中,其中符合要求的有12中,根據(jù)古典概型概率公式可得.

試題解析:(1)由莖葉圖可知,甲地被抽取的觀眾問卷得分的中位數(shù)是

乙地被抽取的觀眾問卷得分的平均數(shù)是.

(2)依題意,從8人中任選2人,包括:

,,,共28種選法,其中滿足條件的有12種,所以所求概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,將曲線 (α為參數(shù))上的每一點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼囊话耄缓笳麄(gè)圖象向右平移1個(gè)單位,最后橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?倍得到曲線C1 . 以坐標(biāo)原點(diǎn)為極點(diǎn),x的非負(fù)半軸為極軸,建立的極坐標(biāo)中的曲線C2的方程為ρ=4sinθ,求C1和C2公共弦的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在冬季供暖時(shí)減少能量損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費(fèi)用(單位:萬元)與隔熱層厚度(單位:)滿足關(guān)系:,若不建隔熱層,每年能源消耗費(fèi)用為8萬元,設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.

(1)求的值及的表達(dá)式;

(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>0,b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是橢圓C上一點(diǎn),直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N.求證:|AN||BM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若動(dòng)點(diǎn)為橢圓外一點(diǎn),且點(diǎn)到橢圓的兩條切線相互垂直,求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等比數(shù)列,首項(xiàng)a1=1,公比q0,其前n項(xiàng)和為Sn,且S1+a1,S3+a3,S2+a2成等差數(shù)列.

)求數(shù)列{an}的通項(xiàng)公式;

)若數(shù)列{bn}滿足,Tn為數(shù)列{bn}的前n項(xiàng)和,若Tn≥m恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)圓形波浪實(shí)驗(yàn)水池的中心有三個(gè)振動(dòng)源,假如不計(jì)其它因素,在t秒內(nèi),它們引發(fā)的水面波動(dòng)可分別由函數(shù) 描述,如果兩個(gè)振動(dòng)源同時(shí)啟動(dòng),則水面波動(dòng)由兩個(gè)函數(shù)的和表達(dá),在某一時(shí)刻使這三個(gè)振動(dòng)源同時(shí)開始工作,那么,原本平靜的水面將呈現(xiàn)的狀態(tài)是(
A.仍保持平靜
B.不斷波動(dòng)
C.周期性保持平靜
D.周期性保持波動(dòng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)動(dòng)點(diǎn)P在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1的對(duì)角線BD1上,記 .當(dāng)∠APC為鈍角時(shí),則λ的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某生態(tài)園將一塊三角形地的一角開辟為水果園,已知角, 的長(zhǎng)度均大于200米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆.

(1)若圍墻、總長(zhǎng)度為200米,如何可使得三角形地塊面積最大?

(2)已知竹籬笆長(zhǎng)為米, 段圍墻高1米, 段圍墻高2米,造價(jià)均為每平方米100元,求圍墻總造價(jià)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案