【題目】對于實數(shù)x,記[x]表示不超過x的最大整數(shù),如[3.14]=3,[﹣0.25]=﹣1.若存在實數(shù)t,使得[t]=1,[t2]=2,[t3]=3…[tt]=n同時成立,則正整數(shù)n的最大值為

【答案】4
【解析】解:若[t]=1,則t∈[1,2),
若[t2]=2,則t∈[ , )(因為題目需要同時成立,則負區(qū)間舍去),
若[t3]=3,則t∈[ , ),
若[t4]=4,則t∈[ , ),
若[t5]=5,則t∈[ , ),
其中 ≈1.732, ≈1.587, ≈1.495, ≈1.431<1.495,
通過上述可以發(fā)現(xiàn),當t=4時,可以找到實數(shù)t使其在區(qū)間[1,2)∩[ ,
∩[ , )∩[ , )上,
但當t=5時,無法找到實數(shù)t使其在區(qū)間[1,2)∩[ )∩[ , )∩[
∩[ , )上,
∴正整數(shù)n的最大值4.
所以答案是:4.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是( )

A. 至少有一個白球;至少有一個紅球 B. 至少有一個白球;紅、黑球各一個

C. 恰有一個白球;一個白球一個黑球 D. 至少有一個白球;都是白球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一個半徑為1的半球材料中截取兩個高度均為的圓柱,其軸截面如圖所示.設兩個圓柱體積之和為

(1)的表達式,并寫出的取值范圍;

(2)求兩個圓柱體積之和的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為13,且成績分布在[40100],分數(shù)在80以上(80)的同學獲獎.按文、理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.

(1)a的值,并計算所抽取樣本的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)填寫下面的2×2列聯(lián)表,并判斷能否有超過95%的把握認為“獲獎與學生的文、理科有關(guān)”?

文科生

理科生

合計

獲獎

5

不獲獎

合計

200

附表及公式:

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)對任意的,恒有,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1的底面是等腰直角三角形,AB=AC=2,四棱錐C﹣ABB1A1的體積等于4.

(1)求AA1的值;
(2)求C1到平面A1B1C的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax-1(a>0且a≠1).

(1)若函數(shù)y=f(x)的圖象經(jīng)過點P(3,4),求a的值;

(2)當a變化時,比較f(lg)與f(-2.1)的大小,并寫出比較過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,D、E分別是△ABC的邊BC的三等分點,設 =m, =n,∠BAC=

(1)用 分別表示 , ;
(2)若 =15,| |=3 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在下列各函數(shù)中,最小值等于2的函數(shù)是(
A.y=x+
B.y=cosx+ (0<x<
C.y=
D.y=

查看答案和解析>>

同步練習冊答案