【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù)).

(1)若函數(shù)的圖象在處的切線方程為,求, 的值;

(2)若時(shí),函數(shù)內(nèi)是增函數(shù),求的取值范圍;

(3)當(dāng)時(shí),設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn)、,過(guò)線段的中點(diǎn)軸的垂線分別交、于點(diǎn)、,問(wèn)是否存在點(diǎn),使處的切線與處的切線平行?若存在,求出的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1) ;(2);(3)不存在.

【解析】試題分析:

(1)利用導(dǎo)函數(shù)與切線的關(guān)系得到方程,解方程可得, ;

(2)函數(shù)為增函數(shù),則內(nèi)恒成立,處理恒成立問(wèn)題可得的取值范圍是;

(3) 假設(shè)在點(diǎn)處的切線與在點(diǎn)處的切線平行,則, ①,討論可得矛盾,假設(shè)不成立,

在點(diǎn)處的切線與在點(diǎn)處的切線不平行.

試題解析:(1)當(dāng)時(shí), ,導(dǎo)數(shù),

,

即函數(shù)的圖象在處的切線斜率為,切點(diǎn)為,

函數(shù)的圖象在處的切線方程為

,

,

(2)時(shí),函數(shù)的解析式是,

導(dǎo)數(shù),

函數(shù)內(nèi)是增函數(shù),

內(nèi)恒成立, ,

時(shí), .

,故的取值范圍是;

(3)假設(shè)在點(diǎn)處的切線與在點(diǎn)處的切線平行,

設(shè)點(diǎn), , ,

則由題意得點(diǎn)、的橫坐標(biāo)與中點(diǎn)的橫坐標(biāo)相等,且為,

時(shí), , ,

在點(diǎn)處的切線斜率為,

由于兩切線平行,則,

,則兩邊同乘以,得,

,

, ,

設(shè),則, ①,

, ,則,

, 上單調(diào)遞增,

, ,這與①矛盾,假設(shè)不成立,

在點(diǎn)處的切線與在點(diǎn)處的切線不平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年7月9日21時(shí)15分,臺(tái)風(fēng)“蓮花”在我國(guó)廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬(wàn)人受災(zāi), 5.6萬(wàn)人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元,距離陸豐市222千米的梅州也受到了臺(tái)風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成, , 五組,并作出如下頻率分布直方圖(圖1):

(1)試根據(jù)頻率分布直方圖估計(jì)小區(qū)平均每戶居民的平均損失;

(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)小明向班級(jí)同學(xué)發(fā)出倡議,為該小區(qū)居民捐款,現(xiàn)從損失超過(guò)6000元的居民中隨機(jī)

抽出2戶進(jìn)行捐款援助,求抽出的2戶居民損失均超過(guò)8000元的概率;

(3)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召該小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如下表,

在圖2表格空白外填寫正確數(shù)字,并說(shuō)明是否有95%以上的把握認(rèn)為捐款數(shù)額超過(guò)或

不超過(guò)500元和自身經(jīng)濟(jì)損失是否超過(guò)4000元有關(guān)?

經(jīng)濟(jì)損失不超過(guò)4000元

經(jīng)濟(jì)損失超過(guò)4000元

合計(jì)

捐款超過(guò)500元

30

捐款不超過(guò)500元

6

合計(jì)

附:臨界值參考公式: , .

0.15

0.10

0.05

/td>

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某校舉行的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為,且成績(jī)分布在分?jǐn)?shù)在以上(含的同學(xué)獲獎(jiǎng). 按文理科用分層抽樣的方法抽取人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖(見下圖).

(1)填寫下面的列聯(lián)表,能否有超過(guò)的把握認(rèn)為獲獎(jiǎng)與學(xué)生的文理科有關(guān)

(2)將上述調(diào)査所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取名學(xué)生,獲獎(jiǎng)學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

文科生

理科生

合計(jì)

獲獎(jiǎng)

不獲獎(jiǎng)

合計(jì)

附表及公式:

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線,曲線為參數(shù)), 以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2)若射線分別交兩點(diǎn), 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為、,離心率,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)設(shè)過(guò)點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓、兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;

(3)在第(2)問(wèn)的條件下,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)多面體的直觀圖及三視圖如圖所示,分別是的中點(diǎn).

I)求證:平面;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)設(shè),

①記的導(dǎo)函數(shù)為,求;

②若方程有兩個(gè)不同實(shí)根,求實(shí)數(shù)的取值范圍;

(2)若在上存在一點(diǎn)使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1,a14=b4.

(1)求{an}的通項(xiàng)公式;

(2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生身高情況,某校以的比例對(duì)全校1000名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,已知男女比例為,測(cè)得男生身高情況的頻率分布直方圖(如圖所示):

(1)計(jì)算所抽取的男生人數(shù),并估計(jì)男生身高的中位數(shù)(保留兩位小數(shù));

(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在之間的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案