已知
OB
=(2,0),
OC
=(2,2),
CA
=(
2
cosα,
2
sinα)
,則
OA
OB
夾角的取值范圍是( 。
A.[
π
12
,
π
3
]
B.[
π
4
12
]
C.[
π
12
,
12
]
D.[
12
π
2
]

精英家教網(wǎng)
OA
=
OC
+
CA
=(2+
2
cosα,2+
2
sinα)
,設A(x,y),則
x=2+
2
cosα
y=2+
2
sinα
其中α是參數(shù),
化為普通方程即(x-2)2+(y-2)2=2,
這是一個以點(2,2)為圓心、
2
為半徑的圓,
作出圖象如圖,從圖中可知兩向量
OA
,
OB
夾角的取值范圍是[
π
12
,
12
]

故選:C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
OB
=(2,0),
OC
=(2,2),
CA
=(
2
cosα,
2
sinα)
,則
OA
OB
夾角的取值范圍是(  )
A、[
π
12
π
3
]
B、[
π
4
12
]
C、[
π
12
12
]
D、[
12
π
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•靜?h一模)已知
OB
=(2,0), 
OC
=(2,2), 
CA
=(2,1)
,則
OA
OB
夾角的正弦值為
3
5
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•汕尾二模)已知F1(-
2
,0),F2(
2
,0)
為平面內(nèi)的兩個定點,動點P滿足|PF1|+|PF2|=4,記點P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)判斷原點O關于直線x+y-1=0的對稱點R是否在曲線Γ包圍的范圍內(nèi)?說明理由.
(注:點在曲線Γ包圍的范圍內(nèi)是指點在曲線Γ上或點在曲線Γ包圍的封閉圖形的內(nèi)部)
(Ⅲ)設點O為坐標原點,點A,B,C是曲線Γ上的不同三點,且
OA
+
OB
+
OC
=
0
.試探究:直線AB與OC的斜率之積是否為定值?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:靜海縣一模 題型:填空題

已知
OB
=(2,0), 
OC
=(2,2), 
CA
=(2,1)
,則
OA
OB
夾角的正弦值為______.

查看答案和解析>>

同步練習冊答案