經(jīng)過點,并且對稱軸都在坐標(biāo)軸上的等軸雙曲線的方程為(   )
A.B.
C.D.
B

試題分析:依題意設(shè)對稱軸都在坐標(biāo)軸上的等軸雙曲線的方程為,因為點
在雙曲線上,所以k=8,即所求方程為,故選B。
點評:簡單題,利用待定系數(shù)法求圓錐曲線的標(biāo)準(zhǔn)方程,是常見題目,本題恰當(dāng)?shù)卦O(shè)出方程,避免了討論焦點軸的不同可能情況。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的焦點為,準(zhǔn)線與軸的交點為,點上且,則的面積為        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

與雙曲線有共同的漸近線,且經(jīng)過點的雙曲線方程是              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點分別為,上頂點為,離心率為 , 在軸負(fù)半軸上有一點,且

(1)若過三點的圓 恰好與直線相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的準(zhǔn)線與軸交于點,點在拋物線對稱軸上,過可作直線交拋物線于點、,使得,則的取值范圍是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)P是雙曲線=1(a>0 ,b>0)上的點,F(xiàn)1、F2是焦點,雙曲線的離心 率是,且∠F1PF2=90°,△F1PF2面積是9,則a + b=(   )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與拋物線相切傾斜角為的直線軸和軸的交點分別是A和B,那么過A、B兩點的最小圓截拋物線的準(zhǔn)線所得的弦長為
A.4                B.2            C.2            D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),分別是橢圓E:+=1(0﹤b﹤1)的左、右焦點,過的直線與E相交于A、B兩點,且,成等差數(shù)列。
(Ⅰ)求;
(Ⅱ)若直線的斜率為1,求b的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線C1:(p >0)的焦點F恰好是雙曲線C2:(a>0,b >0)的右焦點,且它們的交點的連線過點F,則雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案