若函數(shù)f(x)=(a2-4a+4)x+2a-6的圖象經(jīng)過第二、三、四象限,則a的取值范圍是
(1,2)∪(2,
5
2
(1,2)∪(2,
5
2
分析:由函數(shù)f(x)的圖象過二、三、四象限,知底數(shù)a2-4a+4∈(0,1),數(shù)2a-6<-1,從而求得a的取值范圍.
解答:解:∵函數(shù)f(x)=(a2-4a+4)x+2a-6的圖象經(jīng)過第二、三、四象限,
0<a2-4a+4<1
2a-6<-1
;解,得
a≠2且1<a<3
a<
5
2

即1<a<2,或2<a<
5
2

∴a的取值范圍是(1,2)∪(2,
5
2
);
故答案為:(1,2)∪(2,
5
2
).
點(diǎn)評:本題考查了指數(shù)函數(shù)的圖象和性質(zhì),是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、有以下命題:
(1)若函數(shù)f(x),g(x)在R上是增函數(shù),則f(x)+g(x)在R上也是增函數(shù);
(2)若f(x)在R上是增函數(shù),g(x)在R上是減函數(shù),則g(x)-f(x)在R上是減函數(shù);
(3)若函數(shù)f(x)在區(qū)間[a,b]上遞增,在(b,c)上也遞增,則f(x)在[a,c)上遞增;
(4)若奇函數(shù)f(x)在(0,+∞)上遞減,則f(x)在(-∞,0)上也遞減.
其中正確命題的個(gè)數(shù)為
3
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2-2x-a沒有零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+2x+a-1沒有零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•泰安一模)已知非零向量
a
,
b
滿足:|
a
|=2|
b
|,若函數(shù)f(x)=
1
3
x3+
1
2
|
a
|x2+
a
b
x在R上有極值,設(shè)向量
a
,
b
的夾角為θ,則cosθ的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=|4x-x2|-a的零點(diǎn)個(gè)數(shù)為2,則a的范圍是
{a|a=0或a>4}
{a|a=0或a>4}

查看答案和解析>>

同步練習(xí)冊答案