【題目】如圖,將等腰直角三角形沿斜邊上的高翻折,使二面角的大小為,翻折后的中點(diǎn)為.

)證明平面;

)求二面角的余弦值.

【答案】)證明見(jiàn)解析;(.

【解析】

)根據(jù)等腰直角三角形沿斜邊上的高翻折,則, ,又的中點(diǎn),易得,,再利用線面垂直的判定定理證明.

)建立空間直角坐標(biāo)系,不妨設(shè),易知二面角的平面角是,則,然后分別求得平面的一個(gè)法向量,平面的一個(gè)法向量,代入公式求解..

)∵折疊前是斜邊上的高,

的中點(diǎn),

,又因?yàn)檎郫B后的中點(diǎn),

,折疊后

,,

平面

)建立如圖空間直角坐標(biāo)系,

不妨設(shè),易知二面角的平面角是,

,,,

設(shè)平面的一個(gè)法向量為

,即,令,

設(shè)平面的一個(gè)法向量,

,即,令,

.

所以二面角的余弦值是 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)籠子里關(guān)著只貓,其中有只白貓,只黑貓.把籠門(mén)打開(kāi)一個(gè)小口,使得每次只能鉆出只貓.貓爭(zhēng)先恐后地往外鉆.如果只貓都鉆出了籠子,以表示只白貓被只黑貓所隔成的段數(shù).例如,在出籠順序?yàn)椤啊酢觥酢酢酢酢觥酢酢觥敝,則

1)求三只黑貓挨在一起出籠的概率;

2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:某快遞小哥從A地出發(fā),沿小路以平均時(shí)速20公里/小時(shí),送快件到C處,已知(公里),,是等腰三角形,.

1)試問(wèn),快遞小哥能否在50分鐘內(nèi)將快件送到C處?

2)快遞小哥出發(fā)15分鐘后,快遞公司發(fā)現(xiàn)快件有重大問(wèn)題,由于通訊不暢,公司只能派車(chē)沿大路追趕,若汽車(chē)平均時(shí)速60公里/小時(shí),問(wèn),汽車(chē)能否先到達(dá)C處?

參考值:, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,為正方形,且平面平面,點(diǎn)為棱的中點(diǎn).

1)在棱上是否存在一點(diǎn),使得平面?并說(shuō)明理由;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形邊長(zhǎng)為,將沿翻折到的位置,使得二面角的大小為.

1)證明:平面平面;

2)點(diǎn)在直線上,且直線與平面所成角正弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為2的正方體中,分別是棱的中點(diǎn),是底面內(nèi)一動(dòng)點(diǎn),若直線與平面不存在公共點(diǎn),以下說(shuō)法正確的個(gè)數(shù)是(

①三棱錐的體積為定值;

的面積的最小值為;

平面

④經(jīng)過(guò)三點(diǎn)的截面把正方體分成體積相等的兩部分.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在底面是菱形的四棱錐中,,點(diǎn)上,且,面

(1)證明:;

(2)在棱上是否存在一點(diǎn),使平面?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)x[1,e]時(shí),fx)的最小值為_____;設(shè)gx)=[fx]2fx+a若函數(shù)gx)有6個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,方程C:表示的曲線被稱(chēng)作四葉玫瑰線”(如圖)

1)求以極點(diǎn)為圓心的單位圓與四葉玫瑰線交點(diǎn)的極坐標(biāo)和直角坐標(biāo);

2)直角坐標(biāo)系的原點(diǎn)與極點(diǎn)重合,x軸正半軸與極軸重合.求直線l:上的點(diǎn)M與四葉攻瑰線上的點(diǎn)N的距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案