【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求實數(shù)a的值;
(Ⅱ)若p是q的充分條件,求實數(shù)a的取值范圍.

【答案】解:(Ⅰ)B={x|x2﹣4x+3≥0}={x|x≤1,或x≥3},A={x|a﹣1<x<a+1},
由A∩B=,A∪B=R,得 ,得a=2,
所以滿足A∩B=,A∪B=R的實數(shù)a的值為2;
(Ⅱ)因p是q的充分條件,所以AB,且A≠,所以結(jié)合數(shù)軸可知,
a+1≤1或a﹣1≥3,解得a≤0,或a≥4,
所以p是q的充分條件的實數(shù)a的取值范圍是(﹣∞,0]∪[4,+∞)
【解析】(Ⅰ)把集合B化簡后,由A∩B=,A∪B=R,借助于數(shù)軸列方程組可解a的值;(Ⅱ)把p是q的充分條件轉(zhuǎn)化為集合A和集合B之間的關(guān)系,運(yùn)用兩集合端點值之間的關(guān)系列不等式組求解a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某紡紗廠生產(chǎn)甲、乙兩種棉紗,已知生產(chǎn)甲種棉紗1噸需耗一級籽棉2噸、二級籽棉1噸;生產(chǎn)乙種棉紗1噸需耗一級籽棉1噸,二級籽棉2噸.每1噸甲種棉紗的利潤為900元,每1噸乙種棉紗的利潤為600元.工廠在生產(chǎn)這兩種棉紗的計劃中,要求消耗一級籽棉不超過250噸,二級籽棉不超過300噸.問甲、乙兩種棉紗應(yīng)各生產(chǎn)多少噸,能使利潤總額最大?并求出利潤總額的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的長軸長為6,且橢圓與圓 的公共弦長為.

(1)求橢圓的方程.

(2)過點作斜率為的直線與橢圓交于兩點, ,試判斷在軸上是否存在點,使得為以為底邊的等腰三角形.若存在,求出點的橫坐標(biāo)的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,且BC邊上的高為 ,則當(dāng) + 取得最大值時,內(nèi)角A=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,已知PA⊥平面ABCD,AD∥BC,AD⊥AB,PA=AD=2BC=2AB=2.

(1)求證:平面PAC⊥平面PCD;
(2)若E是PD的中點,求平面BCE將四棱錐P﹣ABCD分成的上下兩部分體積V1、V2之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐ABC﹣A1B1C1中,底面ABC是邊長為2的正三角形,側(cè)棱AA1⊥底面ABC,AA1= ,P、Q分別是AB、AC上的點,且PQ∥BC.

(1)若平面A1PQ與平面A1B1C1相交于直線l,求證:l∥B1C1;
(2)當(dāng)平面A1PQ⊥平面PQC1B1時,確定點P的位置并說明理由.S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在公務(wù)員招聘中,既有筆試又有面試,某單位在2015年公務(wù)員考試中隨機(jī)抽取100名考生的筆試成績,按成績分為5組[50,60),[60,70),[70,80),[80,90),[90,100],得到的頻率分布直方圖如圖所示.

(1)求a值及這100名考生的平均成績;
(2)若該單位決定在成績較高的第三、四、五組中按分層抽樣抽取6名考生進(jìn)入第二輪面試,現(xiàn)從這6名考生中抽取3名考生接受單位領(lǐng)導(dǎo)面試,設(shè)第四組中恰有1名考生接受領(lǐng)導(dǎo)面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,, 分別為的中點,點在線段上.

(Ⅰ)求證:平面;

(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一扇形的周長為20cm,當(dāng)扇形的圓心角α等于多少時,這個扇形的面積最大?最大面積是多少?

查看答案和解析>>

同步練習(xí)冊答案