6.若復數(shù)z滿足($\overline{z}$+2i-3)(4+3i)=3-4i,則|z|=( 。
A.$\sqrt{10}$B.$\sqrt{13}$C.3$\sqrt{2}$D.2$\sqrt{3}$

分析 把已知等式變形,利用復數(shù)代數(shù)形式的乘除運算求得$\overline{z}$,再由$|\overline{z}|=|z|$求得答案.

解答 解:由($\overline{z}$+2i-3)(4+3i)=3-4i,
得$\overline{z}=\frac{3-4i}{4+3i}+3-2i=\frac{(3-4i)(4-3i)}{(4+3i)(4-3i)}+3-2i$=$\frac{-25i}{25}+3-2i=3-3i$,
∴$|\overline{z}|=|z|=\sqrt{{3}^{2}+(-3)^{2}}=3\sqrt{2}$.
故選:C.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查了共軛復數(shù)的概念,訓練了復數(shù)模的求法,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.采用隨機模擬實驗估計拋擲一枚硬幣三次恰有兩次正面朝上的概率;由計算機產(chǎn)生隨機數(shù)0或1,其中1表示正面朝上,0表示反面朝上,每三個隨機數(shù)作為一組,代表投擲三次的結果,已知隨機模擬實驗產(chǎn)生了如下20組隨機數(shù):
101  111  010  101    100   001   101   111 110   000
011    001   010    100    000    101   101   010  011   001
由此估計拋擲一枚硬幣三次恰有兩次正面朝上的概率是0.4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若sinα=$\frac{3}{5}$且α是第二象限角,則tan(α-$\frac{π}{4}$)=-7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知復數(shù)z=$\frac{{2+{i^{2016}}}}{1+i}$(i為虛數(shù)單位),則復數(shù)z的共軛復數(shù)在復平面內(nèi)對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某種產(chǎn)品的質量以其質量指標值衡量,質量指標值越大表明質量越好,且質量指標值大于17克時,該產(chǎn)品為優(yōu)等品.現(xiàn)在為了解甲、乙兩廠產(chǎn)品的質量,從兩廠生產(chǎn)的產(chǎn)品中分別隨機抽取各10件樣品,測量樣品的質量指標值(單位:克)•如圖是測量數(shù)據(jù)的莖葉圖:
(1)試用上述樣本數(shù)據(jù)估計A、B兩廠生產(chǎn)的優(yōu)等品率
(2)從甲廠10件樣品中抽取2件,乙廠10件中抽取1件,若3件中優(yōu)等品的件數(shù)記為X,求X的分布列和數(shù)學期望;
(3)從甲廠的10件樣品中有放回的隨機抽取3件,也從乙廠的10件樣品中有放回的隨機抽取3件,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多1件的概率.(每次抽取一件)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)=msinx+2ncos2$\frac{x}{2}$-n在x=$\frac{π}{4}$時取得最小值$\frac{\sqrt{2}}{2}$(m+n)(m≠0),將函數(shù)f(x)圖象上各點的橫坐標變?yōu)樵瓉淼?\frac{1}{ω}$倍(ω>O,縱坐標不變)得到函數(shù)g(x)的圖象,若g(x)在區(qū)間($\frac{π}{2}$,π)內(nèi)單調遞減,則ω的取值范圍為[$\frac{1}{2}$,$\frac{1}{4}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=sin(x-$\frac{3π}{2}$)sinx-$\sqrt{3}$cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)求函數(shù)f(x)在[$\frac{π}{6}$,$\frac{2π}{3}$]上的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x-2≤0\\ x+y-3≥0\end{array}$,則z=$\frac{2^x}{4^y}$的取值范圍是[$\frac{1}{16}$,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知tanα=-2,則$\frac{1}{4}$sin2α+$\frac{2}{5}$cos2α的值為(  )
A.$\frac{17}{25}$B.$\frac{25}{7}$C.$\frac{7}{25}$D.$\frac{25}{17}$

查看答案和解析>>

同步練習冊答案