函數(shù)y=x3-2x的零點是
x=0或x=±
2
x=0或x=±
2
分析:令函數(shù)y=x3-2x=0,解得x的值,可得函數(shù)的零點.
解答:解:令函數(shù)y=x3-2x=0,解得x=0,或 x=±
2
,
故函數(shù)的零點為:x=0或 x=±
2
,
故答案為:x=0或 x=±
2
點評:本題主要考查函數(shù)的零點的定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x3-2x在點(1,1)處的切線方程為
x-y=0
x-y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•湖北模擬)已知f(x)=x3+bx2+cx+2.
(1)若f(x)在x=1時有極值-1,求b、c的值;
(2)若函數(shù)y=x2+x-5的圖象與函數(shù)y=
k-2x
的圖象恰有三個不同的交點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•湖北模擬)已知f(x)=x3+bx2+cx+2.
(Ⅰ)若f(x)在x=1時有極值-1,求b、c的值;
(Ⅱ)若函數(shù)y=x2+x-5的圖象與函數(shù)y=
k-2
x
的圖象恰有三個不同的交點,求實數(shù)k的取值范圍;
(Ⅲ)記函數(shù)|f'(x)|(-1≤x≤1)的最大值為M,求證:M≥
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x3-2x+2在x=2處的切線的斜率為_________.

查看答案和解析>>

同步練習冊答案