函數(shù)y=x2(x>0)的圖象在點(diǎn)(an,an2)處的切線與x軸交點(diǎn)的橫坐標(biāo)為an+1(n∈N*),若a1=16,則數(shù)列{an}的通項(xiàng)公式為( )
A.a(chǎn)n=n(n∈N*)
B.a(chǎn)n=25-n(n∈N*)
C.a(chǎn)n=22-n(n∈N*)
D.a(chǎn)n=25-n(n≥2)
【答案】
分析:根據(jù)導(dǎo)數(shù)的幾何意義,求出的圖象在點(diǎn)(a
n,a
n2)處的切線斜率,再求出切線方程,得出a
n+1,根據(jù)數(shù)列{a
n}的性質(zhì)去求通項(xiàng).
解答:解:函數(shù)y=x
2的導(dǎo)數(shù)y′=2x,在點(diǎn)(a
n,a
n2)處的切線斜率為k=2a
n,
由直線方程的點(diǎn)斜式得切線方程為y-a
n2=2an(x-an)
令y=0,得切線與x軸交點(diǎn)的橫坐標(biāo)x=
an,即a n+1=
所以數(shù)列{a
n }是以為公比的等比數(shù)列,a
1=16,
a
n=16×
=2
5-n故選B
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義,直線方程求解、等比數(shù)列的判定及通項(xiàng)公式.是基礎(chǔ)題.