分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),計(jì)算f(2),f′(2)的值,求出切線方程即可;
(Ⅱ)求出函數(shù)g(x)的導(dǎo)數(shù),通過(guò)討論a的范圍,判斷函數(shù)g(x)的單調(diào)性結(jié)合函數(shù)零點(diǎn)的個(gè)數(shù)確定a的范圍即可;
(Ⅲ)設(shè)h(x)=(x-1)ex-ln(x-1)-x-1,其定義域?yàn)椋?,+∞),只需證明h(x)≥0即可,根據(jù)函數(shù)的單調(diào)性求出h(x)的最小值,從而證出結(jié)論.
解答 解:(Ⅰ)函數(shù)f(x)的定義域是(1,+∞),$f'(x)=\frac{x(2ax-2a+1)}{x-1}$.
當(dāng)a=1時(shí),f'(2)=4a+2=6,f(2)=4a+3=7.
所以函數(shù)f(x)在點(diǎn)(2,f(2))處的切線方程為y-7=6(x-2).
即y=6x-5. …(4分)
(Ⅱ)函數(shù)g(x)的定義域?yàn)镽,由已知得g'(x)=x(ex+2a).
①當(dāng)a=0時(shí),函數(shù)g(x)=(x-1)ex只有一個(gè)零點(diǎn);
②當(dāng)a>0,因?yàn)閑x+2a>0,
當(dāng)x∈(-∞,0)時(shí),g'(x)<0;當(dāng)x∈(0,+∞)時(shí),g'(x)>0.
所以函數(shù)g(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增.
又g(0)=-1,g(1)=a,
因?yàn)閤<0,所以x-1<0,ex<1,所以ex(x-1)>x-1,所以g(x)>ax2+x-1
取${x_0}=\frac{{-1-\sqrt{1+4a}}}{2a}$,顯然x0<0且g(x0)>0
所以g(0)g(1)<0,g(x0)g(0)<0.
由零點(diǎn)存在性定理及函數(shù)的單調(diào)性知,函數(shù)有兩個(gè)零點(diǎn).
③當(dāng)a<0時(shí),由g'(x)=x(ex+2a)=0,得x=0,或x=ln(-2a).
。 當(dāng)$a<-\frac{1}{2}$,則ln(-2a)>0.
當(dāng)x變化時(shí),g'(x),g(x)變化情況如下表:
x | (-∞,0) | 0 | (0,ln(-2a)) | ln(-2a) | (ln(-2a),+∞) |
g'(x) | + | 0 | - | 0 | + |
g(x) | ↗ | -1 | ↘ | ↗ |
x | (-∞,ln(-2a)) | ln(-2a) | (ln(-2a),0) | 0 | (0,+∞) |
g'(x) | + | 0 | - | 0 | + |
g(x) | ↗ | ↘ | -1 | ↗ |
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
教育模式 人數(shù)(人) | 在線測(cè)評(píng) | 在線課堂 | 自主學(xué)習(xí) | 線下延伸 |
25 | √ | √ | √ | |
45 | √ | |||
40 | √ | √ | ||
30 | √ | √ | √ | |
40 | √ | √ | ||
20 | √ | √ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x>2} | B. | {x|0≤x<2} | C. | {x|0<x≤2} | D. | {x|x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com