【題目】如圖1,在四邊形中,,,,.把沿著翻折至的位置,構(gòu)成三棱錐如圖2.

(1)當時,證明:;

(2)當三棱錐的體積最大時,求點到平面的距離.

【答案】(1)證明見解析;(2).

【解析】

(1)由題易得,再證,可得平面,最后得出即可;

(2)設(shè)到面的距離,要使取到最大值,需且僅需取到最大值,再取的中點,連結(jié),分析可得當且僅當平面平面時,取得最大值,,設(shè)到平面的距離為,利用等體積法計算出即可.

(1)因為,,

依題意得,,即,,

因為,所以,故,即,

又因為,,所以平面,;

(2)因為,,,,所以的面積為,

設(shè)到面的距離,則三棱錐的體積為,

故要使取到最大值,需且僅需取到最大值,

的中點,連結(jié),如下圖,依題意知,,

所以,,且

因為平面平面,,平面,

所以當平面平面時,平面,故

故當且僅當平面平面時,取得最大值,

此時,

設(shè)到平面的距離為,可得,

,解得,故到平面的距離為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點分別是,,離心率為,左、右頂點分別為.且垂直于軸的直線被橢圓截得的線段長為1.

1)求橢圓的標準方程;

2)經(jīng)過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷方程的根個數(shù);

(2)若時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)fx)=|lnx|,若函數(shù)gx)=fx)-ax在區(qū)間(0,4)上有三個零點,則實數(shù)a的取值范圍是(

A. (0,B. ,e)C. D. (0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校甲、乙、丙三名語文老師和、、三名數(shù)學(xué)老師被派往某縣城一中和二中支教,其中有一名語文老師和一名數(shù)學(xué)老師被派到了一中,其它老師都去二中支教,則甲與被派到同一所學(xué)校的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

)求函數(shù)的單調(diào)區(qū)間;

)當時, ,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程4個不同的根,則實數(shù)的取值范圍是

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,古稱“角黍”,平行四邊形形狀的紙片是由六個邊長為的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為______;若該六面體內(nèi)有一球,則該球表面積的最大值為______.

查看答案和解析>>

同步練習冊答案