精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系xoy中,已知拋物線y2=2px橫坐標為4的點到該拋物線的焦點的距離為5.
(1)求拋物線的標準方程;
(2)設點C是拋物線上的動點,若以C為圓心的圓在y軸上截得的弦長為4,求證:圓C過定點.
分析:(1)根據拋物線的定義及橫坐標為4的點到該拋物線的焦點的距離為5.可求得p,則拋物線方程可得.
(2)設圓心C的坐標為(
y
2
0
4
,y0)
,半徑為r,根據圓心C在y軸上截得的弦長為4表示出r和y0的關系,代入圓的方程,根據對于任意的y0∈R,方程均成立進而得到關于x和y的方程組,求得x和y,進而推斷圓C過定點.
解答:解:(1)依題意,得:
p
2
+4=5
,∴p=2.
拋物線標準方程為:y2=4x
(2)設圓心C的坐標為(
y
2
0
4
,y0)
,半徑為r.
∵圓心C在y軸上截得的弦長為4∴r2=4+(
y
2
0
4
)2

圓心C的方程為:(x-
y
2
0
4
)2+(y-y0)2=4+(
y
2
0
4
)2

從而變?yōu)椋?span id="ipfrcdm" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">(1-
x
2
)
y
2
0
-2yy0+(x2+y2-4)=0①
對于任意的y0∈R,方程①均成立.
故有:
1-
x
2
=0
-2y=0
x2+y2=4
解得:
x=2
y=0

所以,圓C過定點(2,0).
點評:本題主要考查了直線與圓錐曲線的綜合問題.直線與圓錐曲線的位置關系是歷年高考命題的熱點;試題具有一定的綜合性,覆蓋面大,不僅考查“三基”掌握的情況,而且重點考查學生的作圖、數形結合、等價轉化、分類討論、邏輯推理、合理運算,以及運用數學知識分析問題和解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經過坐標原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•泰州三模)選修4-4:坐標系與參數方程
在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設直線AC與BD的交點為P,求動點P的軌跡的參數方程(以t為參數)及普通方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案