【題目】已知函數(shù),,曲線y=g(x)x=1處的切線方程為x-2y-1=0.    

(Ⅰ),b;

(Ⅱ),求m的取值范圍.

【答案】(1),.(2).

【解析】

(1)先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義求切線斜率,最后化簡解得,,(2)先化簡不等式,再構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)性質(zhì),結(jié)合,確定m的取值范圍.

(1)∵,∴.又依題意,可得:,

.又因為切點(diǎn)為,所以,即

由上可解得,

(2)依題意,,即.又,所以原不等式

等價于.構(gòu)造函數(shù),則,

當(dāng)時,上恒成立,故上單調(diào)遞增,

,故當(dāng),,故不合題意

當(dāng)時,令,得,由下表:

單調(diào)遞增

單調(diào)遞減

可知,

構(gòu)造,,可得,由下表:

單調(diào)遞減

單調(diào)遞增

可知,.由上可知,只能有,即

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、分別是離心率為的橢圓的左、右焦點(diǎn),點(diǎn)是橢圓上異于其左、右頂點(diǎn)的任意一點(diǎn),過右焦點(diǎn)的外角平分線的垂線,交于點(diǎn),且為坐標(biāo)原點(diǎn)).

(1)求橢圓的方程;

(2)若點(diǎn)在圓上,且在第一象限,過作圓的切線交橢圓于兩點(diǎn),問:的周長是否為定值?如果是,求出該定值;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,函數(shù)被稱為狄利克雷函數(shù),其中為實數(shù)集,為有理數(shù)集,則關(guān)于函數(shù)有如下四個命題:

;

②函數(shù)是偶函數(shù);

③任取一個不為零的有理數(shù)對任意的恒成立;

④存在三個點(diǎn),使得為等邊三角形.

其中真命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了反映國民經(jīng)濟(jì)各行業(yè)對倉儲物流業(yè)務(wù)的需求變化情況,以及重要商品庫存變化的動向,中國物流與采購聯(lián)合會和中儲發(fā)展股份有限公司通過聯(lián)合調(diào)查,制定了中國倉儲指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國倉儲指數(shù)走勢情況.

根據(jù)該折線圖,下列結(jié)論正確的是

A. 2016年各月的倉儲指數(shù)最大值是在3月份

B. 2017年1月至12月的倉儲指數(shù)的中位數(shù)為54%

C. 2017年1月至4月的倉儲指數(shù)比2016年同期波動性更大

D. 2017年11月的倉儲指數(shù)較上月有所回落,顯示出倉儲業(yè)務(wù)活動仍然較為活躍,經(jīng)濟(jì)運(yùn)行穩(wěn)中向好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),,若的充分條件.

1)求證:函數(shù)的圖像總在直線的下方;

2)是否存在實數(shù),使得不等式對一切實數(shù)恒成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生態(tài)環(huán)境部環(huán)境規(guī)劃院研究表明,京津冀區(qū)域PM2.5主要來自工業(yè)和民用污染,其中冬季民用污染占比超過50%,最主要的源頭是散煤燃燒.因此,推進(jìn)煤改清潔能源成為三地協(xié)同治理大氣污染的重要舉措.2018年是北京市壓減燃煤收官年,450個平原村完成了煤改清潔能源,全市集中供熱清潔化比例達(dá)到99%以上,平原地區(qū)基本實現(xiàn)無煤化,為了解煤改氣后居民在采暖季里每月用氣量的情況,現(xiàn)從某村隨機(jī)抽取100戶居民進(jìn)行調(diào)查,發(fā)現(xiàn)每戶的用氣量都在150立方米到450立方米之間,得到如圖所示的頻率分布直方圖.在這些用戶中,用氣量在區(qū)間的戶數(shù)為(

A.5B.15C.20D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)解答一道三角函數(shù)題:已知函數(shù),且

(Ⅰ)求的值;

(Ⅱ)求函數(shù)在區(qū)間上的最大值及相應(yīng)x的值.

該同學(xué)解答過程如下:

解答:(Ⅰ)因為,所以.因為,

所以

(Ⅱ)因為,所以.令,則

畫出函數(shù)上的圖象,

由圖象可知,當(dāng),即時,函數(shù)的最大值為

下表列出了某些數(shù)學(xué)知識:

任意角的概念

任意角的正弦、余弦、正切的定義

弧度制的概念

,的正弦、余弦、正切的誘導(dǎo)公式

弧度與角度的互化

函數(shù),,的圖象

三角函數(shù)的周期性

正弦函數(shù)、余弦函數(shù)在區(qū)間上的性質(zhì)

同角三角函數(shù)的基本關(guān)系式

正切函數(shù)在區(qū)間上的性質(zhì)

兩角差的余弦公式

函數(shù)的實際意義

兩角差的正弦、正切公式

參數(shù)A,對函數(shù)圖象變化的影響

兩角和的正弦、余弦、正切公式

二倍角的正弦、余弦、正切公式

請寫出該同學(xué)在解答過程中用到了此表中的哪些數(shù)學(xué)知識.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)fx)是定義在R上的函數(shù),且對任意實數(shù)x,有fx2)=x23x+3

)求函數(shù)fx)的解析式;

)若{x|fx2)=﹣(a+2x+3b}{a},求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形是菱形,,,平面,,,的中點(diǎn).

(1)求證:平面平面

(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案