【題目】某地發(fā)生地質(zhì)災(zāi)害,使當(dāng)?shù)氐淖詠?lái)水受到了污染,某部門(mén)對(duì)水質(zhì)檢測(cè)后,決定往水中投放一種藥劑來(lái)凈化水質(zhì).已知每投放質(zhì)量為m的藥劑后,經(jīng)過(guò)x天該藥劑在水中釋放的濃度y(毫克/升)滿(mǎn)足,其中,當(dāng)藥劑在水中釋放的濃度不低于4(毫克/升)時(shí)稱(chēng)為有效凈化;當(dāng)藥劑在水中釋放的濃度不低于4(毫克/升)且不高于10(毫克/升)時(shí)稱(chēng)為最佳凈化.
(1)如果投放的藥劑質(zhì)量為m=4,試問(wèn)自來(lái)水達(dá)到有效凈化一共可持續(xù)幾天?
(2)如果投放的藥劑質(zhì)量為m,為了使在7天(從投放藥劑算起包括7天)之內(nèi)的自來(lái)水達(dá)到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量m的最小值.
【答案】(1)16天(2)
【解析】
(1)由題意首先得到該藥劑在水中釋放的濃度的解析式,然后求解不等式即可確定自來(lái)水達(dá)到有效凈化一共可持續(xù)的天數(shù).
(2)由確定各段的單調(diào)性,求出值域,然后將原問(wèn)題轉(zhuǎn)化為恒成立的問(wèn)題可得m的最小值.
(1)由題意,當(dāng)藥劑質(zhì)量為m=4,所以
當(dāng)時(shí),顯然符合題意.
當(dāng)x>4時(shí),解得,
綜上,
所以自來(lái)水達(dá)到有效凈化一共可持續(xù)16天.
(2)由,得:
在區(qū)間(0,4]上單調(diào)遞增,即;
在區(qū)間(4,7]上單調(diào)遞減,即,
綜上,
為使恒成立,只要且即可,
即所以應(yīng)該投放的藥劑質(zhì)量m的最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(2)是否存在實(shí)數(shù),使得在上的值域恰好是?若存在,求出實(shí)數(shù)的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)O是四邊形內(nèi)一點(diǎn),判斷結(jié)論:“若,則該四邊形必是矩形,且O為四邊形的中心”是否正確,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在空間四邊形中,, ,,,且平面平面.
(1)求證:;
(2)若直線(xiàn)與平面所成角的余弦值為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一幾何體的平面展開(kāi)圖,其中四邊形ABCD為矩形,E,F分別為PA,PD的中點(diǎn),在此幾何體中,給出下面4個(gè)結(jié)論:
直線(xiàn)BE與直線(xiàn)CF異面;直線(xiàn)BE與直線(xiàn)AF異面;直線(xiàn)平面PBC;平面平面PAD.
其中正確的結(jié)論個(gè)數(shù)為
A. 4個(gè)
B. 3個(gè)
C. 2個(gè)
D. 1個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)度為的線(xiàn)段的兩個(gè)端點(diǎn)、分別在軸和軸上運(yùn)動(dòng),動(dòng)點(diǎn)滿(mǎn)足,設(shè)動(dòng)點(diǎn)的軌跡為曲線(xiàn).
(1)求曲線(xiàn)的方程;
(2)過(guò)點(diǎn)且斜率不為零的直線(xiàn)與曲線(xiàn)交于兩點(diǎn)、,在軸上是否存在定點(diǎn),使得直線(xiàn)與的斜率之積為常數(shù).若存在,求出定點(diǎn)的坐標(biāo)以及此常數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)y=x2+mx–2與x軸交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1).當(dāng)m變化時(shí),解答下列問(wèn)題:
(1)能否出現(xiàn)AC⊥BC的情況?說(shuō)明理由;
(2)證明過(guò)A,B,C三點(diǎn)的圓在y軸上截得的弦長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(II) 當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com