A. | $\frac{{3\sqrt{6}}}{5}$ | B. | $\frac{{5\sqrt{6}}}{6}$ | C. | $\frac{6}{5}$ | D. | $\frac{5}{6}$ |
分析 根據雙曲線的方程可得雙曲線的焦點坐標,根據MF1⊥x軸進而可得M的坐標,則MF1可得,進而根據雙曲線的定義可求得MF2.
解答 解:已知雙曲線$\frac{x^2}{6}-\frac{y^2}{3}=1$的焦點為F1、F2,
點M在雙曲線上且MF1⊥x軸,M(3,$\frac{\sqrt{6}}{2}$),則MF1=$\frac{\sqrt{6}}{2}$,
故MF2=2$\sqrt{6}$+$\frac{\sqrt{6}}{2}$=$\frac{5\sqrt{6}}{2}$,
故F1到直線F2M的距離為 $\frac{{|F}_{1}{F}_{2}||M{F}_{1}|}{|M{F}_{2}|}$=$\frac{6×\frac{\sqrt{6}}{2}}{\frac{5\sqrt{6}}{2}}$=$\frac{6}{5}$.
故選:C.
點評 本題主要考查了雙曲線的簡單性質.要理解好雙曲線的定義,解答關鍵是利用面積法求直角三角形斜邊上的高.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | k>3 | B. | 2<k<3 | C. | k=2 | D. | 0<k<2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com