下列命題正確的個(gè)數(shù)(  )

(1)命題“”的否定是“∀x∈R,x2+1≤3x”;

(2)函數(shù)f(x)=cos2ax﹣sin2ax的最小正周期為π”是“a=1”的必要不充分條件;

(3)“x2+2x≥ax在x∈[1,2]上恒成立”⇔“(x2+2x)min≥(ax)max在x∈[1,2]上恒成立”

(4)“平面向量的夾角是鈍角”的充分必要條件是“

  A. 1 B. 2 C. 3 D. 4

解答: 解:(1)根據(jù)特稱命題的否定是全稱命題,∴(1)正確;

(2)f(x)==cos2ax,最小正周期是=π⇒a=±1,∴(2)正確;

(3)例a=2時(shí),x2+2x≥2x在x∈[1,2]上恒成立,而(x2+2x)min=3<2xmax=4,∴(3)不正確;

(4)∵=||||cos,∵=π時(shí)<0,∴(4)錯(cuò)誤.

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江一模)下列命題正確的個(gè)數(shù)( 。
(1)命題“?x0∈R,
x
2
0
+1>3x0
”的否定是“?x∈R,x2+1≤3x”;
(2)函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
(3)“x2+2x≥ax在x∈[1,2]上恒成立”?“(x2+2x)min≥(ax)max在x∈[1,2]上恒成立”
(4)“平面向量
a
b
的夾角是鈍角”的充分必要條件是“
a
b
<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的個(gè)數(shù)為( 。
①斜線與它在平面內(nèi)的射影所成的角是這條斜線和這個(gè)平面內(nèi)所有直線所成的角的最小角.
②二面角α-l-β的平面角是過(guò)棱l上任一點(diǎn)O,分別在兩個(gè)半平面內(nèi)任意兩條射線OA,OB所成角的∠AOB的最大角.
③如果一條直線和一個(gè)平面的一條斜線垂直,那么它也和這條斜線在這個(gè)平面內(nèi)的射影垂直.
④設(shè)A是空間一點(diǎn),
n
為空間任一非零向量,適合條件的集合{
M
|
AM
n
=0
}的所有點(diǎn)M構(gòu)成的圖形是過(guò)點(diǎn)A且與
n
垂直的一個(gè)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的個(gè)數(shù)是( 。
①平行于同一個(gè)平面的兩條直線可以相交;
②直線l與平面α不垂直,則直線l與平面α內(nèi)的有直線都不垂直;
③若平面α內(nèi)存在不共線的三點(diǎn)到平面β的距離相等,則α∥β;
④對(duì)直線m,n和平面a若m⊥a,m⊥n,則n∥a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的個(gè)數(shù)是( 。
0
a
=0
a
b
=
b
a

a
2=|
a
|2
④|
a
b
|
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為定義在R上的周期函數(shù),g(x)為定義在R上的非周期函數(shù),且g(x)≥0,則下列命題正確的個(gè)數(shù)是( 。
①[f(x)]2必為周期函數(shù);
②f(g(x))必為周期函數(shù);
g(x)
不是周期函數(shù);
④g(f(x))必為周期函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案