映射f:A→B,如果滿足集合B中的任意一個元素在A中都有原象,則稱為“滿射”.已知集合A中有4個元素,集合B中有3個元素,那么從A到B的不同滿射的個數(shù)為( )
A.24
B.6
C.36
D.72
【答案】分析:根據(jù)題中稱為“滿射”的要求,即為了保證滿足集合B中的任意一個元素在A中都有原象,必須先對集合A中四個元素進行處理,將其中兩個合并成一組,然后再和集合B中的三個元素進行對應(yīng)即可.
解答:解:∵滿足集合B中的任意一個元素在A中都有原象,
∴對于集合A中的元素必須有兩個元素對應(yīng)集合B中的某一個元素,
∴先從集合A中選出兩個元素組成一組,有C42=6,
再與集合中的元素對應(yīng),有A33=6,
根據(jù)乘法原理得:6×6=36.
故選C.
點評:本題主要考查了映射、排列組合計算原理,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、定義:對于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個元素都有原象,則稱f:A→B為一一映射.如果存在對應(yīng)關(guān)系φ,使A到B成為一一映射,則稱A和B具有相同的勢.給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢;
②有兩個同心圓,A是小圓上所有點形成的集合,B是大圓上所有點形成的集合,則A和B 不具有相同的勢;
③A是B的真子集,則A和B不可能具有相同的勢;
④若A和B具有相同的勢,B和C具有相同的勢,則A和C具有相同的勢
其中真命題為
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10、已知集合A={1,2,3,4},B={-1,-2},設(shè)映射f:A→B,如果集合B中的元素都是A中元素在f下的象,那么這樣的映射有
14
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3、映射f:A→B,如果滿足集合B中的任意一個元素在A中都有原象,則稱為“滿射”.已知集合A中有4個元素,集合B中有3個元素,那么從A到B的不同滿射的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={1,2,3,4},集合B={-1,-2},設(shè)映射f:A→B.如果集合B中的元素都是A中元素在f下的象,那么這樣的映射f有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:對于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個元素都有原象,則稱f:A→B為一一映射.如果存在對應(yīng)關(guān)系φ,使A到B成為一一映射,則稱A和B具有相同的勢.給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢;
②A是直角坐標系平面內(nèi)所有點形成的集合,B是復(fù)數(shù)集,則A和B 不具有相同的勢;
③若A={
a
,
b
},其中
a
,
b
是不共線向量,B={
c
|
c
a
,
b
共面的任意向量},則A和B不可能具有相同的勢;
④若區(qū)間A=(-1,1),B=(-∞,+∞),則A和B具有相同的勢.
其中真命題為
①③④
①③④

查看答案和解析>>

同步練習(xí)冊答案