【題目】下面給出了2010年亞洲一些國家的國民平均壽命(單位:歲)

國家 平均壽命

國家 平均壽命

國家 平均壽命

國家 平均壽命

國家 平均壽命

阿曼 76.1
巴林 76.1
朝鮮 68.9
韓國 80.6
老撾 64.3
蒙古 67.6
緬甸 64.9
日本 82.8

泰國 73.7
約旦 73.4
越南 75.0
中國 74.8
伊朗 74.0
印度 66.5
文萊 77.6
也門 62.8

阿富汗 59.0
阿聯(lián)酋 76.7
東帝汶 67.3
柬埔寨 66.4
卡塔爾 77.8
科威特 74.1
菲律賓 67.8
黎巴嫩 78.5

尼泊爾 68.0
土耳其 74.1
伊拉克 68.5
以色列 81.6
新加坡 81.5
敘利亞 72.3
巴基斯坦 65.2
馬來西亞 74.2

孟加拉國 70.1
塞浦路斯 79.4
沙特阿拉伯 73.7
哈薩克斯坦68.3
印度尼西亞68.2
土庫曼斯坦65.0
吉爾吉斯斯坦69.3
烏茲別克斯坦67.9


(1)請補齊頻率分布表,并求出相應(yīng)頻率分布直方圖中的a,b;

分組

頻數(shù)

頻率

[59.0,63.0)

2

0.05

[63.0,67.0)

[67.0,71.0)

[71.0,75.0)

9

0.225

[75.0,7.0)

7

0.175

[79.0,83.0]

5

0.125

合計

40

1.00


(2)請根據(jù)統(tǒng)計思想,利用(1)中的頻率分布直方圖估計亞洲人民的平均壽命.

【答案】
(1)6;0.15;11;0.275
(2)解:由頻率分布直方圖可知,

以上所有國家的國民平均壽命的平均數(shù)約為

=61×0.05+65×0.15+69×0.275+73×0.225+77×0.175+81×0.125=71.8;

根據(jù)統(tǒng)計思想,估計亞洲人民的平均壽命大約為71.8歲.


【解析】(1)根據(jù)題意,計算[63.0,67.0)的頻數(shù)是6,頻率是 =0.15;

[67.0,71.0)的頻數(shù)是11,頻率是 =0.275,補齊頻率分布表如下;

分組

頻數(shù)

頻率

[59.0,63.0)

2

0.05

[63.0,67.0)

6

0.15

[67.0,71.0)

11

0.275

[71.0,75.0)

9

0.225

[75.0,7.0)

7

0.175

[79.0,83.0]

5

0.125

合計

40

1.00

計算a= =0.05625,

b= =0.04375;

【考點精析】解答此題的關(guān)鍵在于理解頻率分布直方圖的相關(guān)知識,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求與圓(x﹣2)2+y2=2相切且在x軸,y軸上截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1 , 則下列四個命題:
①P在直線BC1上運動時,三棱錐A﹣D1PC的體積不變;
②P在直線BC1上運動時,直線AP與平面ACD1所成角的大小不變;
③P在直線BC1上運動時,二面角P﹣AD1﹣C的大小不變;
④M是平面A1B1C1D1上到點D和C1距離相等的點,則M點的軌跡是過D1點的直線
其中真命題的個數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD中,AB=2,AD=1,在矩形ABCD的邊CD上隨機取一點E,記“△AEB的最大邊是AB”為事件M,則P(M)等于(
A.2﹣
B. ﹣1
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本公司計劃2018年在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費用不超過9萬元,甲、乙電視臺的廣告收費標(biāo)準(zhǔn)分別為/分鐘和200/分鐘,規(guī)定甲、乙兩個電視臺為該公司所做的每分鐘廣告,能給公司事來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙兩個電視臺的廣告時間,才能使公司的收益最大,最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1:x2+y2=4與圓C2:(x﹣1)2+(y﹣3)2=4,過動點P(a,b)分別作圓C1、圓C2的切線PM,PN,(M,N分別為切點),若|PM|=|PN|,則a2+b2﹣6a﹣4b+13的最小值是(
A.5
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為貫徹落實教育部6部門《關(guān)于加快發(fā)展青少年校園足球的實施意見》,全面提高我市中學(xué)生的體質(zhì)健康水平,培養(yǎng)拼搏意識和團隊精神,普及足球知識和技能,市教體局決定舉行春季校園足球聯(lián)賽.為迎接此次聯(lián)賽,甲中學(xué)選拔了20名學(xué)生組成集訓(xùn)隊,現(xiàn)統(tǒng)計了這20名學(xué)生的身高,記錄入如表:(設(shè)ξ為隨機變量)

身高(cm)

168

174

175

176

178

182

185

188

人數(shù)

1

2

4

3

5

1

3

1


(1)請計算這20名學(xué)生的身高的中位數(shù)、眾數(shù),并補充完成下面的莖葉圖;
(2)身高為185cm和188cm的四名學(xué)生分別記為A,B,C,D,現(xiàn)從這四名學(xué)生選2名擔(dān)任正副門將,請利用列舉法列出所有可能情況,并求學(xué)生A入選門將的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在坐標(biāo)原點的橢圓C經(jīng)過點A(2,3),且點F (2,0)為其右焦點.
(1)求橢圓C的方程和離心率e;
(2)若平行于OA的直線l與橢圓有公共點,求直線l在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知)的最小值為.

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)在中,內(nèi)角 , 的對邊分別為, , ,且,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案