20.若函數(shù)f(x)=$\frac{1}{3}$x3+x2-3x+1在(a,2a+7)上有最小值,則實(shí)數(shù)a的取值范圍為(-3,1).

分析 f′(x)=x2+2x-3=(x+3)(x-1),分別令f′(x)>0,令f′(x)<0,得到函數(shù)f(x)的單調(diào)區(qū)間,要使函數(shù)f(x)=$\frac{1}{3}$x3+x2-3x+1在(a,2a+7)上有最小值,只需$\left\{\begin{array}{l}{a<1<2a+7}\\{f(a)≥f(1)}\end{array}\right.$,解出即可得出.

解答 解:f′(x)=x2+2x-3=(x+3)(x-1),
令f′(x)>0,解得x<-3或x>1,令f′(x)<0,解得-3<x<1,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-3),(1,+∞),減區(qū)間為(-3,1).
所以要使函數(shù)f(x)=$\frac{1}{3}$x3+x2-3x+1在(a,2a+7)上有最小值,
只需$\left\{\begin{array}{l}{a<1<2a+7}\\{f(a)≥f(1)}\end{array}\right.$,解得$\left\{\begin{array}{l}{-3<a<1}\\{a≥-5}\end{array}\right.$,解得-3<a<1,
故答案為:(-3,1).

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)全集U=R,集合A={x|x<2},B={y|y=x2+1},則A∪∁UB=(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若cos($\frac{π}{2}$+φ)=$\frac{\sqrt{3}}{2}$,則cos($\frac{3π}{2}$-φ)+sin(φ-π)的值為( 。
A.$\sqrt{3}$B.-$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.平行線3x+4y-9=0和6x+my-1=0的距離是$\frac{17}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知α是第三象限角,tan(2π-α)=-$\frac{5}{12}$,則sinα等于( 。
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.-$\frac{5}{13}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)是定義在(-∞,+∞)上的偶函數(shù),x>0時(shí),f(x)單調(diào)遞增,P=f(-π),Q=f(e),$R=f(\sqrt{2})$,則P,Q,R的大小為( 。
A.R>Q>PB.Q>R>PC.P>R>QD.P>Q>R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知b>1,直線(b2+1)x+ay+2=0與直線x-(b-1)y-1=0互相垂直,則a的最小值等于( 。
A.$2\sqrt{2}-1$B.$2\sqrt{2}+1$C.$2\sqrt{2}+2$D.$2\sqrt{2}-2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.集合A={x∈R|0<x<3},B={x∈R|-1≤x≤2},則A∪B=( 。
A.{x|-1≤x≤3}B.{x|0≤x≤2}C.{x|-1≤x<3}D.{x|0<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=|x2-5x+4|,f(x)的單調(diào)增區(qū)間為$[1,\frac{5}{2}]$,[4,+∞);若方程f(x)=mx有三個(gè)不相等的實(shí)根,則m=1,且三個(gè)實(shí)根的和是8.

查看答案和解析>>

同步練習(xí)冊(cè)答案