【題目】從某中學甲、乙兩班各隨機抽取 名同學,測量他們的身高(單位: ),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計甲、乙兩班同學的身高情況,則下列結(jié)論正確的是( )

A. 甲班同學身高的方差較大 B. 甲班同學身高的平均值較大

C. 甲班同學身高的中位數(shù)較大 D. 甲班同學身高在 以上的人數(shù)較多

【答案】A

【解析】分析:結(jié)合莖葉圖逐一考查所給的選項即可求得最終結(jié)果.

詳解:逐一考查所給的選項:

觀察莖葉圖可知甲班同學數(shù)據(jù)波動大,則甲班同學身高的方差較大,A選項正確;

甲班同學身高的平均值為:

,

乙班同學身高的平均值為:

則乙班同學身高的平均值大,B選項錯誤;

甲班同學身高的中位數(shù)為:

乙班同學身高的中位數(shù)為:,

則乙班同學身高的中位數(shù)大,C選項錯誤;

甲班同學身高在 以上的人數(shù)為3人,

乙班同學身高在 以上的人數(shù)為4人,

則乙班同學身高在 以上的人數(shù)多,D選項錯誤;

本題選擇A選項.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)討論函數(shù)的單調(diào)性;

(2)是否存在,使得對任意恒成立?若存在,求出的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

在平面直角坐標系中,曲線的參數(shù)方程是為參數(shù),),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程是,等邊的頂點都在上,且點,,依逆時針次序排列,點的極坐標為.

(1)求點,的直角坐標;

(2)設上任意一點,求點到直線距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)討論函數(shù)極值點的個數(shù),并說明理由;

(2)若, 恒成立,求的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列五個命題:

①函數(shù)fx=2a2x-1-1的圖象過定點(,-1);

②已知函數(shù)fx)是定義在R上的奇函數(shù),當x≥0時,fx=xx+1),若fa=-2則實數(shù)a=-12

③若loga1,則a的取值范圍是(,1);

④若對于任意xRfx=f4-x)成立,則fx)圖象關(guān)于直線x=2對稱;

⑤對于函數(shù)fx=lnx,其定義域內(nèi)任意x1x2都滿足f

其中所有正確命題的序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,.

(1)當時,判斷曲線與曲線的位置關(guān)系;

(2)當曲線上有且只有一點到曲線的距離等于時,求曲線上到曲線距離為的點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)在復數(shù)范圍內(nèi)解方程為虛數(shù)單位)

2)設是虛數(shù),是實數(shù),且

i)求的值及的實部的取值范圍;

ii)設,求證:為純虛數(shù);

iii)在(ii)的條件下求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為,且,圓軸交于點,為橢圓上的動點,面積最大值為.

(1)求圓與橢圓的方程;

(2)圓的切線交橢圓于點,求的取值范圍.

查看答案和解析>>

同步練習冊答案