已知實數(shù)x、y滿足條件
x-y+5≥0
x+y≥0
x≤3
,則z=
y-1
x+3
的最小值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:本題考查的知識點是線性規(guī)劃,處理的思路為:根據(jù)已知的約束條件
x-y+5≥0
x+y≥0
x≤3
,畫出滿足約束條件的可行域,分析z=
y-1
x+3
表示的幾何意義,結(jié)合圖象即可給出 z的最大值.
解答: 解:約束條件
x-y+5≥0
x+y≥0
x≤3
對應(yīng)的平面區(qū)域如下圖示:

z=
y-1
x+3
表示平面上一定點(-3,1)與可行域內(nèi)任一點連線斜率,
由圖易得當(dāng)該點為(3,-3)的最小值是:-
2
3
,
故答案為:-
2
3
點評:平面區(qū)域的最值問題是線性規(guī)劃問題中一類重要題型,在解題時,關(guān)鍵是正確地畫出平面區(qū)域,分析表達(dá)式的幾何意義,然后結(jié)合數(shù)形結(jié)合的思想,分析圖形,找出滿足條件的點的坐標(biāo),即可求出答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)數(shù)范圍內(nèi)方程x2-2x+4=0的解為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)焦點在x軸上的雙曲線的漸近線為:y=±
3
2
x,則該雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列條件:
(1)焦點在x軸上;
(2)焦點在y軸上;
(3)焦點到準(zhǔn)線的距離為4;
(4)通徑長為2; 
(5)拋物線上橫坐標(biāo)為2的點到焦點的距離為3.
能推出拋物線的標(biāo)準(zhǔn)方程為y2=4x的是
 
(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對函數(shù)f(x),若存在區(qū)間M=[a,b](a<b),使得{y|y=f(x),x∈M}=M,則稱區(qū)間M為函數(shù)f(x)的一個“穩(wěn)定區(qū)間”,給出下列四個函數(shù):
(1)f(x)=ex,(2)f(x)=x3,(3)f(x)=cos
π
2
x,(4)f(x)=lnx+1,
其中存在“穩(wěn)定區(qū)間”的函數(shù)有(  )
A、(1)(2)
B、(2)(3)
C、(3)(4)
D、(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
(x∈R,ω>0)
(1)求f(x)的值域;
(2)若f(x1)=f(x2)=0,且|x1-x2|的最小值為
π
2
,求f(x)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,過F2且垂直于x軸的直線與橢圓交于A、B兩點,若△ABF1是銳角三角形,則該橢圓離心率e的取值范圍是(  )
A、e>
2
-1
B、0<e<
2
-1
C、
2
-1<e<1
D、
2
-1<e<
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=x+b與以橢圓
x2
3
+
y2
4
=1的上焦點為焦點,頂點在坐標(biāo)原點O的拋物線交于A、B兩點,若△OAB是以角O為直角的三角形,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖中的小網(wǎng)格由等大的小正方形拼成,則向量
a
-
b
=(  )
A、e1+3e2
B、-e1-3e2
C、e1-3e2
D、-e1+3e2

查看答案和解析>>

同步練習(xí)冊答案