分析 可作出圖形,并取AC的中點為D,連接OD,BD,從而有$\overrightarrow{AO}=x\overrightarrow{AB}+2y\overrightarrow{AD}$,而x+2y=1,從而得出O,D,B三點共線,這樣根據(jù)O為外心便可得出BD⊥AC,這樣在Rt△ABD中即可求出cos∠BAD,即求出cos∠BAC的值.
解答 解:如圖,設AC中點為D,則$\overrightarrow{AC}=2\overrightarrow{AD}$;
∴$\overrightarrow{AO}=x\overrightarrow{AB}+2y\overrightarrow{AD}$;
∵x+2y=1;
∴O,D,B三點共線,連接BO;
∵O是△ABC的外心;
∴OD⊥AC;
∴BD⊥AC,且D為AC的中點;
∴在Rt△ABD中,AB=5,AD=4;
∴$cos∠BAC=cos∠BAD=\frac{4}{5}$.
故答案為:$\frac{4}{5}$.
點評 考查三角形外心的定義,三點A,B,C共線的充要條件:$\overrightarrow{OB}=x\overrightarrow{OA}+y\overrightarrow{OC}$,且x+y=1,向量數(shù)乘的幾何意義,以及三角函數(shù)的定義.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0” | |
B. | “x=-1”是“x2-5x-6=0”的根的逆命題為假命題 | |
C. | 若p∧q為假命題,則p、q均為假命題 | |
D. | 若命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,則x2+x+1≥0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0°<A≤30° | B. | 0°<A≤45° | ||
C. | 0°<A≤60° 或120°≤A<180° | D. | 0°<A≤60° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com