【題目】已知cosx=﹣ ,x∈(0,π)
(1)求cos(x﹣ )的值;
(2)求sin(2x+ )的值.

【答案】
(1)解:∵cosx=﹣ ,x∈(0,π)

∴sinx= = ,

∴cos(x﹣ )= ×(﹣ )+ × =


(2)解:由(1)可得:sin2x=2sinxcosx=2× =﹣ ,

cos2x=2cos2x﹣1=2× ﹣1=﹣

∴sin(2x+ )= sin2x+ cos2x= (﹣ )+ ×(﹣ )=﹣


【解析】(1)由已知利用同角三角函數(shù)基本關(guān)系式可求sinx的值,利用兩角差的余弦函數(shù)公式及特殊角的三角函數(shù)值即可計(jì)算得解cos(x﹣ )的值.(2)由(1)利用二倍角公式可得sin2x,cos2x的值,利用兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值即可計(jì)算得解sin(2x+ )的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用兩角和與差的余弦公式和兩角和與差的正弦公式的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握兩角和與差的余弦公式:;兩角和與差的正弦公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 ,圓
(1)求兩圓公共弦所在直線的方程;
(2)直線ι過(guò)點(diǎn)(4,﹣4)與圓C1相交于A,B兩點(diǎn),且 ,求直線ι的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形中, 動(dòng)點(diǎn)在以點(diǎn)為圓心且與相切的圓上,若,則的最大值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn= an+n﹣3.
(1)求證:數(shù)列{an﹣1}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)令cn=log3(a1﹣1)+log3(a2﹣1)+…+log3(an﹣1),對(duì)任意n∈N*, + +…+ <k都成立,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的 ,令 ,下面說(shuō)法錯(cuò)誤的是( )
A.若 共線,則 =0
B. =
C.對(duì)任意的λ∈R,有 =
D.( 2+( 2=| |2| |2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】?jī)蓷l平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個(gè)不同的公共點(diǎn),則稱(chēng)兩條平行線和圓“相交”;若兩平行直線和圓沒(méi)有公共點(diǎn),則稱(chēng)兩條平行線和圓“相離”;若兩平行直線和圓有一個(gè)、兩個(gè)或三個(gè)不同的公共點(diǎn),則稱(chēng)兩條平行線和圓“相切”.已知直線l1:2x﹣y+a=0,l2:2x﹣y+a2+1=0和圓:x2+y2+2x﹣4=0相切,則a的取值范圍是(
A.a>7或a<﹣3
B.
C.﹣3≤a≤一 ≤a≤7
D.a≥7或a≤﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是常數(shù)且),對(duì)于下列命題:

①函數(shù)的最小值是

②函數(shù)上是單調(diào)函數(shù);

③若上恒成立,則的取值范圍是;

④對(duì)任意的,恒有

其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)= 是(﹣∞,+∞)上的減函數(shù),那么a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以(a,1)為圓心,且與兩直線x﹣y+1=0及x﹣y﹣3=0同時(shí)相切的圓的標(biāo)準(zhǔn)方程為(
A.x2+(y﹣1)2=2
B.(x﹣2)2+(y﹣1)2=2
C.x2+(y﹣1)2=8
D.(x﹣2)2+(y﹣1)2=8

查看答案和解析>>

同步練習(xí)冊(cè)答案