曲線y=ln(2x+1)在點(diǎn)(0,0)處的切線方程為( 。
A、y=x
B、y=2x
C、y=
1
2
x
D、y=ln2•x
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),得到y(tǒng)′|x=0=1,然后由直線方程的點(diǎn)斜式得曲線在點(diǎn)(0,0)處的切線方程.
解答: 解:由y=ln(2x+1)得y′=
2
2x+1
,
∴y′|x=0=2,
即曲線在點(diǎn)x=0處的切線的斜率為2.
∴曲線在點(diǎn)(0,0)處的切線方程為y-0=2×(x-0),
整理得:y=2x.
故選B.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)處的切線方程,曲線在某點(diǎn)處的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A(1,2)、B(-1,4)、C(5,2).
(1)求AB邊中線所在直線方程;                   
(2)求AB邊中垂線所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,求下列各式的值:
(1)
4sinα-2cosα
5c0sα+3sinα

(2)2sin2α+3sinαcosα-5cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算定積分:∫
 
0
-3
9-x2
dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(2,-2)
(Ⅰ)設(shè)
c
=4
a
+
b
,求(
b
c
a
;
(Ⅱ)求向量
a
b
方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2lnx+sinx,則f′(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x 
2
3
的圖象是圖中的哪一個(gè)( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+(m-4)x2-3mx+(n-6)在定義域內(nèi)是奇函數(shù).
(1)求m,n的值;
(2)求函數(shù)f(x)在區(qū)間[-3,2]的極值和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:m-1<x<m+1,q:(x-2)(x-6)<0,且q是p的必要不充分條件,則m的取值范圍是( 。
A、3<m<5
B、3≤m≤5
C、m>5或m<3
D、m≥5或m≤3

查看答案和解析>>

同步練習(xí)冊(cè)答案