【題目】已知函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,其中為常數(shù).
(1)求的值;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程在上有解,求的取值范圍.
【答案】(1) (2) (3)
【解析】試題分析:(1)根據(jù)函數(shù)的奇偶性,求出a的值即可;(2)求出f(x)+(x﹣1)=(1+x),根據(jù)函數(shù)的單調(diào)性求出m的范圍即可;(3)問題轉(zhuǎn)化為k=﹣x+1在[2,3]上有解,即g(x)=﹣x+1在[2,3]上遞減,根據(jù)函數(shù)的單調(diào)性求出g(x)的值域,從而求出k的范圍即可.
解析:
(1)∵函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,∴函數(shù)為奇函數(shù),
∴,
即,解得或(舍).
(2)
當(dāng)時(shí), ,
∵當(dāng)時(shí), 恒成立,
∴.
(3)由(1)知, ,即,即即在上有解,
在上單調(diào)遞減
的值域?yàn)?/span>,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家外賣公司,其“騎手”的日工資方案如下:甲公司規(guī)定底薪70元,每單抽成1元;乙公司規(guī)定底薪100元,每日前45單無抽成,超出45單的部分每單抽成6元.
假設(shè)同一公司的“騎手”一日送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名“騎手”并記錄其100天的送餐單數(shù),得到如下條形圖:
(Ⅰ)求乙公司的“騎手”一日工資y(單位:元)與送餐單數(shù)n(n∈N﹡)的函數(shù)關(guān)系;
(Ⅱ)若將頻率視為概率,回答以下問題:
(i)記乙公司的“騎手”日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;
(ⅱ)小明擬到這兩家公司中的一家應(yīng)聘“騎手”的工作,如果僅從日工資的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他做出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①中,是成立的充要條件;
②當(dāng)時(shí),有;
③已知 是等差數(shù)列的前n項(xiàng)和,若,則;
④若函數(shù)為上的奇函數(shù),則函數(shù)的圖象一定關(guān)于點(diǎn)成中心對(duì)稱.其中所有正確命題的序號(hào)為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若存在實(shí)數(shù)對(duì),使得等式對(duì)定義域中的任意都成立,則稱函數(shù)是“型函數(shù)”.
(1)若函數(shù)是“型函數(shù)”,且,求出滿足條件的實(shí)數(shù)對(duì);
(2)已知函數(shù).函數(shù)是“型函數(shù)”,對(duì)應(yīng)的實(shí)數(shù)對(duì)為,當(dāng)時(shí),.若對(duì)任意時(shí),都存在,使得,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中
若函數(shù),存在相同的零點(diǎn),求a的值
若存在兩個(gè)正整數(shù)m,n,當(dāng)時(shí),有與同時(shí)成立,求n的最大值及n取最大值時(shí)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且經(jīng)過點(diǎn)M(2,1),直線平行OM,且與橢圓交于A、B兩個(gè)不同的點(diǎn)。
(Ⅰ)求橢圓方程;
(Ⅱ)若AOB為鈍角,求直線在軸上的截距的取值范圍;
(Ⅲ)求證直線MA、MB與軸圍成的三角形總是等腰三角形。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大指出中國(guó)的電動(dòng)汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國(guó)正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.2018年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場(chǎng)分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場(chǎng)調(diào)研知,每輛車售價(jià)5萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.
(1)求出2018年的利潤(rùn)L(x)(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售額-成本)
(2)2018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司推廣線下分店,計(jì)劃在S市的A區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個(gè)數(shù),y表示這個(gè)x個(gè)分店的年收入之和.
(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程
(2)假設(shè)該公司在A區(qū)獲得的總年利潤(rùn)z(單位:百萬元)與x,y之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個(gè)分店時(shí),才能使A區(qū)平均每個(gè)分店的年利潤(rùn)最大?
(參考公式:,其中,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com