已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且F1B+F2B=10,橢圓上不同的兩點(diǎn)A(x1,y1)、C(x2,y2)滿足條件:F2A,F(xiàn)2B,F(xiàn)2C成等差數(shù)列.
(1)求該橢圓的方程;
(2)求弦AC中點(diǎn)的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.
解:(1)由橢圓的定義及已知得2a=F1B+F2B=10,a=5,又c=4,所以b2-a2-c2=9,故該橢圓的方程為=1; (2)由題意可得F2(4,0),F(xiàn)2B=,設(shè)點(diǎn)A(x1,y2),C(x2,y2),則F2A=,又點(diǎn)A(x1,y1)在橢圓=1上,故有=1,,代入F2A=得 F2A=(25-4x1)(或直接利用焦半徑公式),同理F2C=(25-4x2),因?yàn)镕2A,F(xiàn)2B,F(xiàn)2C成等差數(shù)列,所以F2A+F2C=2F2B, ∴,x1+x2=8,故弦AC的中點(diǎn)的橫坐標(biāo)x=4; (3)將x=4代入y=kx+m(k≠0),故點(diǎn)M的坐標(biāo)為(4,4k+m),則kOM==,又kAC==,由=1,=1,兩式相減得=,即·=,·=,k=,∴4k+m=,點(diǎn)M(4,)又點(diǎn)M(4,)在橢圓=1內(nèi),所以,解得,即m的取值范圍為() 分析:本題首先利用橢圓的定義將其方程求出;然后利用已知條件將弦的中點(diǎn)橫坐標(biāo)找出;最后一個(gè)問(wèn)題要注意挖掘隱含條件即相應(yīng)的弦中點(diǎn)一定在橢圓內(nèi). |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
()(本小題滿分12分)已知橢圓C: 的離心率為,過(guò)右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1是,坐標(biāo)原點(diǎn)O到直線l的距離為.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有成立?
若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求橢圓的方程;
(2)設(shè)直線l過(guò)F點(diǎn)(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.
(文)某廠家擬在2006年舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x萬(wàn)件與年促銷費(fèi)用m萬(wàn)元(m≥0)滿足x=3(k為常數(shù)),如果不搞促銷活動(dòng),則該產(chǎn)品的年銷售量只能是1萬(wàn)件.已知2006年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金,不包括促銷費(fèi)用).
(1)將2006年該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為年促銷費(fèi)用m萬(wàn)元的函數(shù);
(2)該廠家2006年的促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com