1.直線a與平面α不垂直,則下列說法正確的是(  )
A.平面α內(nèi)有無數(shù)條直線與直線a垂直
B.平面α內(nèi)有任意一條直線與直線a不垂直
C.平面α內(nèi)有且只有一條直線與直線a垂直
D.平面α內(nèi)可以找到兩條相交直線與直線a垂直

分析 由直線a與平面α不垂直,知:平面α內(nèi)有無數(shù)條平行直線與直線a垂直,平面α內(nèi)沒有兩條相交直線與直線a垂直.

解答 解:由直線a與平面α不垂直,知:
在A中,平面α內(nèi)有無數(shù)條平行直線與直線a垂直,故A正確;
在B中,平面α內(nèi)有無數(shù)條平行直線與直線a垂直,故B錯誤;
在C中,平面α內(nèi)有無數(shù)條平行直線與直線a垂直,故C錯誤;
在D中,平面α內(nèi)沒有兩條相交直線與直線a垂直,故D錯誤.
故選:A.

點評 本題考查命題真假的判斷,是基礎(chǔ)題,解題時要認真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.記“點M(x,y)滿足x2+y2≤a(a>0)”為事件A,記“M(x,y)滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{5x-2y-4≤0}\\{2x+y+2≥0}\end{array}\right.$”為事件B,若P(B|A)=1,則實數(shù)a的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知等差數(shù)列{an}滿足a1+a2=8,a2+a4=12,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.“m>0”是“復數(shù)z=m+$\frac{2}{-1+i}$在復平面內(nèi)對應(yīng)點位于第四象限”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.sin15°cos165°=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知在直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+4cosα}\\{y=2+4sinα}\end{array}\right.$(α為參數(shù)),直線l過定點P(3,5),傾斜角為$\frac{π}{3}$,以原點O為極點,x軸正半軸為極軸建立極坐標系.
(1)試寫出曲線C的極坐標方程;
(2)設(shè)直線l與曲線C交于A、B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=ex-x+a,若f(x)>0恒成立,則實數(shù)a的取值范圍是( 。
A.(-1,+∞)B.(-∞,-1)C.[-1,+∞)D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知p:-x2+4x+12≥0,q:x2-2x+1-m2≤0(m>0).
(Ⅰ)若p是q充分不必要條件,求實數(shù)m的取值范圍;
(Ⅱ)若“¬p”是“¬q”的充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若關(guān)于x的不等式loga(|x-2|+|x+a|)>2(a>0且a≠1)恒成立,則a的取值范圍是(1,2).

查看答案和解析>>

同步練習冊答案