【題目】給定平面上的點(diǎn)集,中任三點(diǎn)均不共線。將中所有的點(diǎn)任意分成83組,使得每組至少有3個(gè)點(diǎn),且每點(diǎn)恰好屬于一組,然后將在同一組的任兩點(diǎn)用一條線段相連,不在同一組的兩點(diǎn)不連線段,這樣得到一個(gè)圖案。不同的分組方式得到不同的圖案。將圖案中所含的以中的點(diǎn)為頂點(diǎn)的三角形的個(gè)數(shù)記為。

(1)求的最小值

(2)設(shè)是使的一個(gè)圖案,若將中的線段(指以的點(diǎn)為端點(diǎn)的線段)用4種顏色染色,每條線段恰好染一種顏色。證明存在一個(gè)染色方案,使染色后不含以的點(diǎn)為頂點(diǎn)的三邊顏色相同的三角形。

【答案】(1)168544;(2)見解析

【解析】

顯然,每個(gè)圖案由的點(diǎn)的分組方法唯一確定.

(1)設(shè),由分組,…,得到,其中為第組的點(diǎn)構(gòu)成的集合,,2,…,83.

,則有,且.

下證當(dāng)時(shí),有.

事實(shí)上,若存在,使得,不妨設(shè),則作的點(diǎn)的分組,…,為第組的點(diǎn)構(gòu)成的集合,),使得

這樣的分組顯然存在.于是,對(duì)于由分組,…,得到的圖案,有

.

.

.

.

.這與的最小性相矛盾.

,

.

(2)設(shè)圖案由分組,…,得到,這里表示第組的點(diǎn)構(gòu)成的集合.由(1)不妨設(shè).下面給出的一個(gè)染色方法,使得用四種不同顏色染后不含三邊顏色相同的三角形.

我們將集合及所連線段構(gòu)成的圖形稱為的第塊,記為,,2,…,83.對(duì)于,令,使得,.將每個(gè)子集中任兩點(diǎn)所連線段用圖(1)所示的方法去染,將不同子集之間所連線段用途(2)所示的方法去染,圖中,,分別代表四種不同的顏色,這樣染后的顯然不含三邊顏色相同的三角形.

對(duì)于,可用染的方法去染,至于的染法,可先加一點(diǎn)并將該點(diǎn)與原來(lái)的24點(diǎn)各連一條線段,染后按的染法染好后,再把加的一點(diǎn)及與該點(diǎn)所連的線段去掉,這樣染后的也不含三邊顏色相同的三角形.

綜上可知,結(jié)論成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線 ,和兩點(diǎn)0,1),-1,0),給出如下結(jié)論:

①不論為何值時(shí), 都互相垂直;

②當(dāng)變化時(shí), 分別經(jīng)過(guò)定點(diǎn)A0,1)和B-1,0);

③不論為何值時(shí), 都關(guān)于直線對(duì)稱;

④如果交于點(diǎn),則的最大值是1

其中,所有正確的結(jié)論的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)滿足:①對(duì)一切恒有;②對(duì)一切恒有;③當(dāng)時(shí),,且;④若對(duì)一切(其中),不等式恒成立.

(1)的值;

(2)證明:函數(shù)上的遞增函數(shù);

(3)求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)孩子的身高與年齡(周歲)具有相關(guān)關(guān)系,根據(jù)所采集的數(shù)據(jù)得到線性回歸方程,則下列說(shuō)法錯(cuò)誤的是(

A.回歸直線一定經(jīng)過(guò)樣本點(diǎn)中心

B.斜率的估計(jì)值等于6.217,說(shuō)明年齡每增加一個(gè)單位,身高就約增加6.217個(gè)單位

C.年齡為10時(shí),求得身高是,所以這名孩子的身高一定是

D.身高與年齡成正相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,動(dòng)點(diǎn)與兩定點(diǎn)連線的斜率之積為,記點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)若過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),曲線上是否存在點(diǎn)使得四邊形為平行四邊形?若存在,求直線的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)當(dāng)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬(wàn)元)對(duì)年銷售量(單位:)的影響,對(duì)近年的年宣傳費(fèi)和年銷售量作了初步統(tǒng)計(jì)和處理,得到的數(shù)據(jù)如下:

年宣傳費(fèi)(單位:萬(wàn)元)

年銷售量(單位:

,.

(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;

(2)求出關(guān)于的線性回歸方程;

(3)若公司計(jì)劃下一年度投入宣傳費(fèi)萬(wàn)元,試預(yù)測(cè)年銷售量的值.

參考公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了推進(jìn)課堂改革,提高課堂效率,銀川一中引進(jìn)了平板教學(xué),開始推進(jìn)智慧課堂改革.學(xué)校教務(wù)處為了了解我校高二年級(jí)同學(xué)平板使用情況,從高二年級(jí)923名同學(xué)中抽取50名同學(xué)進(jìn)行調(diào)查.先用簡(jiǎn)單隨機(jī)抽樣從923人中剔除23人,剩下的900人再按系統(tǒng)抽樣方法抽取50人,則在這923人中,每個(gè)人被抽取的可能性 ( )

A.都相等,且為B.不全相等C.都相等,且為D.都不相等

查看答案和解析>>

同步練習(xí)冊(cè)答案