已知橢圓的離心率,點F為橢圓的右焦點,點A、B分別為橢圓的左、右頂點,點M為橢圓的上頂點,且滿足         (1)求橢圓C的方程;

    (2)是否存在直線,當直線交橢圓于P、Q兩點時,使點F恰為的垂心(三角形三條高的交點)?若存在,求出直線方程;若不存在,請說明理由。

 

【答案】

(1);(2)當時,△不存在,故舍去

時,所求直線存在,且直線的方程為

【解析】第一問中利用根據(jù)題意得,,,,

,,

,又,

第二問中,假設存在直線交橢圓于兩點,且為△的垂心,

,

因為,,故.                     …………7分

于是設直線的方程為,

,結合韋達定理并由題意應有,又,得到結論。

 

解:根據(jù)題意得,,,

,

,又

故橢圓方程為.                        …………5分

(Ⅱ)假設存在直線交橢圓于,兩點,且為△的垂心,

,

因為,,故.                     …………7分

于是設直線的方程為,

,得, 且,.    ……9分

由題意應有,又,

,

整理得

解得.                               …………11分

經(jīng)檢驗,當時,△不存在,故舍去

時,所求直線存在,且直線的方程為

                                                     …………12分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓數(shù)學公式的離心率數(shù)學公式,點F為橢圓的右焦點,點A、B分別為橢圓的左、右頂點,點M為橢圓的上頂點,且滿足數(shù)學公式
(1)求橢圓C的方程;
(2)是否存在直線l,當直線l交橢圓于P、Q兩點時,使點F恰為△PQM的垂心.若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年東北三省長春、哈爾濱、沈陽、大連第二次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

已知橢圓的離心率,點F為橢圓的右焦點,點A、B分別為橢圓的左、右頂點,點M為橢圓的上頂點,且滿足
(1)求橢圓C的方程;
(2)是否存在直線l,當直線l交橢圓于P、Q兩點時,使點F恰為△PQM的垂心.若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學單元檢測:圓錐曲線(1)(解析版) 題型:解答題

已知橢圓的離心率,點F為橢圓的右焦點,點A、B分別為橢圓的左、右頂點,點M為橢圓的上頂點,且滿足
(1)求橢圓C的方程;
(2)是否存在直線l,當直線l交橢圓于P、Q兩點時,使點F恰為△PQM的垂心.若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年遼寧省沈陽市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知橢圓的離心率,點F為橢圓的右焦點,點A、B分別為橢圓的左、右頂點,點M為橢圓的上頂點,且滿足
(1)求橢圓C的方程;
(2)是否存在直線l,當直線l交橢圓于P、Q兩點時,使點F恰為△PQM的垂心.若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案