【題目】已知定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,若不等式f(x3﹣x2+a)+f(﹣x3+x2﹣a)≥2f(1)對x∈[0,1]恒成立,則實數(shù)a的取值范圍為( )
A.[ ,1]
B.[﹣ ,1]
C.[1,3]
D.(﹣∞,1]
【答案】B
【解析】解:∵定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,
∴不等式f(x3﹣x2+a)+f(﹣x3+x2﹣a)≥2f(1)等價為2f(x3﹣x2+a)≥2f(1)
即f(x3﹣x2+a)≥f(1)對x∈[0,1]恒成立,
即﹣1≤x3﹣x2+a≤1對x∈[0,1]恒成立,
即﹣1﹣a≤x3﹣x2≤1﹣a對x∈[0,1]恒成立,
設g(x)=x3﹣x2 , 則g′(x)=3x2﹣2x=x(3x﹣2),
則g(x)在[0, )上遞減,在( ,1]上遞增,
∵g(0)=g(1)=0,g( )=﹣ ,
∴g(x)∈[﹣ ,0],
即 即 ,得﹣ ≤a≤1,
故選:B.
【考點精析】解答此題的關鍵在于理解奇偶性與單調(diào)性的綜合的相關知識,掌握奇函數(shù)在關于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關于原點對稱的區(qū)間上有相反的單調(diào)性.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是公差不為0的等差數(shù)列,Sn為數(shù)列{an}的前n項和,S5=20,a1 , a3 , a7成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn+1=bn+an , 且b1=1,求數(shù)列{ }的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)的定義域為D={x|x≠0},且對于任意x1 , x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷函數(shù)f(x)的奇偶性并證明;
(3)如果f(4)=3,f(x﹣2)+f(x+1)≤3,且f(x)在(0,+∞)上是增函數(shù),求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為 (a>0,β為參數(shù)),以O為極點,x軸的正半軸為極軸,建立極坐標系,直線l的極坐標方程ρcos(θ﹣ )= .
(Ⅰ)若曲線C與l只有一個公共點,求a的值;
(Ⅱ)A,B為曲線C上的兩點,且∠AOB= ,求△OAB的面積最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F為拋物線E:x2=2py(p>0)的焦點,直線l:y=kx+ 交拋物線E于A,B兩點.
(Ⅰ)當k=1,|AB|=8時,求拋物線E的方程;
(Ⅱ)過點A,B作拋物線E的切線l1 , l2 , 且l1 , l2交點為P,若直線PF與直線l斜率之和為﹣ ,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=e ﹣ ,其中e為自然對數(shù)的底數(shù).
(1)設g(x)=(x+1)f′(x)(其中f′(x)為f(x)的導函數(shù)),判斷g(x)在(﹣1,+∞)上的單調(diào)性;
(2)若F(x)=ln(x+1)﹣af(x)+4無零點,試確定正數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}滿足:a1=1,an=e2an+1(n∈N*), ﹣ =n,其中符號Π表示連乘,如 i=1×2×3×4×5,則f(n)的最小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】Sn為數(shù)列{an}的前n項和,已知Sn+1=λSn+1(λ是大于0的常數(shù)),且a1=1,a3=4.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=nan , 求數(shù)列{bn}的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com