【題目】如圖,已知四邊形是直角梯形,,,且,是等邊三角形,,為的中點(diǎn).
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)見解析;(2).
【解析】分析: (1)先證明平面,再證明平面.(2)利用空間向量法求二面角的余弦值.
詳解:(1)證明:取的中點(diǎn)為,連接,,
由題意知 ,可得四邊形為平行四邊形,所以.
由題可知,,,且,平面,面,
所以平面,
又∵平面,∴,
∵為正三角形,∴,
又∵,平面,平面,
∴平面,
又,
∴平面.
(2)解:由(1)可知平面,又平面,則平面平面,
為正三角形,因此取的中點(diǎn)為坐標(biāo)原點(diǎn),以為軸,在底面內(nèi)過作的垂線為軸,為軸,建立空間坐標(biāo)系,
∵,
∴,,,,,,
則,,,
設(shè)平面的法向量為,
則即可取,
,
設(shè)二面角的大小為,則.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對一切實(shí)數(shù),都有成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設(shè):當(dāng)時,不等式恒成立;:當(dāng)時,是單調(diào)函數(shù).如果滿足成立的的集合記為,滿足成立的的集合記為,求(為全集).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù):
125 121 123 125 127 129 125 128 130
129 126 124 125 127 126 122 124 125
126 128
(1)填寫下面的頻率分布表:
分組 | 頻數(shù)累計(jì) | 頻數(shù) | 頻率 |
合計(jì) |
(2)作出頻率分布直方圖.
(3)根據(jù)頻率分布直方圖或頻率分布表求這組數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選擇合適的抽樣方法抽樣,寫出抽樣過程.
(1)有甲廠生產(chǎn)的30個籃球,其中一箱21個,另一箱9個,抽取3個;
(2)有30個籃球,其中甲廠生產(chǎn)的有21個,乙廠生產(chǎn)的有9個,抽取10個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個命題:
(1)命題,使得,則,都有;
(2)已知函數(shù)f(x)=|log2x|,若a≠b,且f(a)=f(b),則ab=1;
(3)若平面α內(nèi)存在不共線的三點(diǎn)到平面β的距離相等,則平面α平行于平面β;
(4)已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關(guān)于點(diǎn)對稱.
其中真命題的序號為______________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:(a>0,b>0)的離心率為,且
(1)求雙曲線C的方程;
(2)已知直線與雙曲線C交于不同的兩點(diǎn)A,B且線段AB的中點(diǎn)在圓上,求m的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過點(diǎn),且與拋物線相交于兩點(diǎn),與軸交于點(diǎn),其中點(diǎn)在第四象限,為坐標(biāo)原點(diǎn).
(Ⅰ)當(dāng)是中點(diǎn)時,求直線的方程;
(Ⅱ)以為直徑的圓交直線于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是的中點(diǎn),是線段上的一點(diǎn),且,,將沿折起使得二面角是直二面角.
(l)求證:平面;
(2)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O是△ABC內(nèi)一點(diǎn),∠AOB=150°,∠BOC=90°,設(shè)=,=,=,且||=2,||=1,||=3,試用和表示.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com