“無字證明”(proofs without words),就是將數(shù)學(xué)命題用簡單、有創(chuàng)意而且易于理解的幾何圖形來呈現(xiàn).請利用圖甲、圖乙中陰影部分的面積關(guān)系,寫出該圖所驗證的一個三角恒等變換公式:________.

sin(α+β)=sinαcosβ+cosαsinβ
分析:左右圖中大矩形的面積相等,左邊的圖中陰影部分的面積為 S1=sin(α+β),在右邊的圖中,陰影部分的面積 S2 等于2個陰影小矩形的面積之和,等于sinαcosβ+cosαsinβ.而面積 S2 還等于大矩形得面積S 減去2個小空白矩形的面積,再由
2個圖中空白部分的面積相等,可得S1 =S2 ,從而得出結(jié)論.
解答:在左邊的圖中大矩形的面積S=(cosβ+cosα)(sinβ+sinα)
=sinβcosβ+cosβsinα+cosαsinα+sinβcosα+sinαcosα=sin(α+β)+sinβcosβ+sinαcosα.
用大矩形的面積S減去4個直角三角形的面積就等于陰影部分的面積 S1
空白部分的面積等于4個直角三角形的面積,即2×(+sinαcosα)=sinβcosβ+sinαcosα.
故陰影部分的面積 S1 =S-sinβcosβ+sinαcosα=sin(α+β).
而在右邊的圖中陰影部分的面積 S2 等于2個陰影小矩形的面積之和,即S2=sinαcosβ+cosαsinβ.
在右邊的圖中大矩形的面積也等于S,S2等于大矩形得面積S 減去2個小空白矩形的面積,
而2個空白矩形的面積之和,即sinβcosβ+sinαcosα,
故左圖中空白部分的面積等于右圖中空白部分的面積.
故左右圖中陰影部分的面積也相等,即 S1 =S2 ,故有sin(α+β)=sinαcosβ+cosαsinβ,
故答案為 sin(α+β)=sinαcosβ+cosαsinβ.
點評:本題主要考查三角函數(shù)的恒等式的證明,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)α、β、γ是三個不重合的平面,l是直線,給出下列命題,其中正確命題的個數(shù)是
①若α⊥β,β⊥γ,則α⊥γ;
②若l上兩點到α的距離相等,則l∥α;
③若l⊥α,l∥β,則α⊥β;
④若α∥β,l?β,且l∥α,則l∥β.


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

在平面直角坐標(biāo)系xOy中,點P的坐標(biāo)為(-1,1),若取原點O為極點,x軸正半軸為極軸,建立極坐標(biāo)系,則在下列選項中,不是點P極坐標(biāo)的是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥
平面ABC,AB=2,AF=2,CE=3,BD=1,O為BC的中點.
(1)求證:AO∥平面DEF;
(2)求證:平面DEF⊥平面BCED;
(3)求平面DEF與平面ABC相交所成銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知數(shù)學(xué)公式,則數(shù)學(xué)公式=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

一條曲線是用以下方法畫成:△ABC是邊長為1的正三角形,曲線CA1、A1A2、A2A3分別以A、B、C為圓心,AC、BA1、CA2為半徑畫的弧,CA1A2A3為曲線的第1圈,然后又以A為圓心,AA3為半徑畫弧,這樣畫到第n圈,則所得曲線CA1A2A3…A3n-2A3n-1A3n的總長度Sn


  1. A.
    數(shù)學(xué)公式
  2. B.
    2π(3n-1)
  3. C.
    n(n+1)π
  4. D.
    n(3n+1)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

(在下列兩題中任選一題,若兩題都做,按第①題給分)
①在直角坐標(biāo)系中圓C的參數(shù)方程為數(shù)學(xué)公式(α為參數(shù)),若以原點O為極點,以x軸正半軸為極軸建立極坐標(biāo)系,則圓C的極坐標(biāo)方程為________.
②已知關(guān)于x的不等式|x+a|+|x-1|+a<2011(a是常數(shù))的解是非空集合,則a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,A、B是⊙O上的兩點,AC是⊙O的切線,∠OBA=75°,⊙O的半徑為1,則OC的長等________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)A={(x,y)|3x+y=1},B={(x,y)|y=(1-2k2)x+5},若A∩B=φ,則k=________.

查看答案和解析>>

同步練習(xí)冊答案