設(shè)向量
a
=(cos23°,cos97°),
b
=(sin97°,sin23°),則
a
b
等于(  )
A、-
1
2
B、
1
2
C、
3
2
D、-
3
2
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:利用數(shù)量積的坐標(biāo)運(yùn)算、兩角和差的正弦公式即可得出.
解答: 解:∵向量
a
=(cos23°,cos97°),
b
=(sin97°,sin23°),
a
b
=cos23°sin97°+cos97°sin23°=sin(97°+23°)=sin120°=sin60°=
3
2

故選:C.
點(diǎn)評(píng):本題考查了數(shù)量積的坐標(biāo)運(yùn)算、兩角和差的正弦公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα<0,sinα>0,則角α終邊在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,當(dāng)輸入a=1,n=6時(shí),輸出的結(jié)果等于( 。
A、32B、64
C、128D、256

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
,
b
都是單位向量,則下列結(jié)論正確的是( 。
A、
a
b
=1
B、
a
2=
b
2
C、
a
b
D、
a
b
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正方體ABCD-A1B1C1D1的對(duì)角線AC1的長(zhǎng)為3cm,則它的體積為(  )
A、4cm3
B、8cm3
C、
112
72
cm3
D、3
3
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=alnx+
1
2
x2
,若對(duì)任意不相等的兩個(gè)正數(shù)x1,x2都有(x1-x2)[f(x1)-f(x2)]>0,則實(shí)數(shù)a的取值范圍是( 。
A、[0,+∞)
B、(0,+∞)
C、(0,1)
D、(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn為等比數(shù)列{an}的前n項(xiàng)和,且8a2+a5=0,則
S3
S2
=( 。
A、-3
B、-2
C、
7
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若平面直角坐標(biāo)系中兩點(diǎn)P與Q滿(mǎn)足:①P、Q分別在函數(shù)f(x),g(x)的圖象上;②P與Q關(guān)于點(diǎn)(1,1)對(duì)稱(chēng),則稱(chēng)點(diǎn)對(duì)(P,Q)是一個(gè)“相望點(diǎn)對(duì)”(規(guī)定:(P,Q)與(Q,P)是同一個(gè)“相望點(diǎn)對(duì)”),函數(shù)y=
x-2
x-1
與y=2sinπx+1(-2≤x≤4)的圖象中“相望點(diǎn)對(duì)”的個(gè)數(shù)是( 。
A、8B、6C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-x2+2x+3在區(qū)間[-2,2]上的最大、最小值分別為(  )
A、4,3B、3,-5
C、4,-5D、5,-5

查看答案和解析>>

同步練習(xí)冊(cè)答案