2.已知點(diǎn)F是拋物線C:y2=2px(p>0)的焦點(diǎn),若點(diǎn)M(x0,1)在C上,且|MF|=$\frac{{5{x_0}}}{4}$.
(1)求p的值;
(2)若直線l經(jīng)過點(diǎn)Q(3,-1)且與C交于A,B(異于M)兩點(diǎn),證明:直線AM與直線BM的斜率之積為常數(shù).

分析 (1)拋物線定義知|MF|=x0+$\frac{p}{2}$,則x0+$\frac{p}{2}$=$\frac{{5{x_0}}}{4}$,求得x0=2p,代入拋物線方程,x0=1,p=$\frac{1}{2}$;
(2)由(1)得M(1,1),拋物線C:y2=2x,當(dāng)直線l經(jīng)過點(diǎn)Q(3,-1)且垂直于x軸時,直線AM的斜率kAM=$\frac{\sqrt{3}-1}{2}$,直線BM的斜率kBM=$\frac{-\sqrt{3}-1}{2}$,kAM•kBM=$\frac{\sqrt{3}-1}{2}$×$\frac{-\sqrt{3}-1}{2}$=-$\frac{1}{2}$.當(dāng)直線l不垂直于x軸時,直線l的方程為y+1=k(x-3),代入拋物線方程,由韋達(dá)定理及斜率公式求得kAM•kBM=$\frac{1}{{y}_{1}{y}_{2}+{y}_{1}{+y}_{2}+1}$=$\frac{1}{-3-\frac{1}{k}+\frac{1}{k}+1}$=-$\frac{1}{2}$,即可證明直線AM與直線BM的斜率之積為常數(shù)-$\frac{1}{2}$.

解答 解:(1)由拋物線定義知|MF|=x0+$\frac{p}{2}$,則x0+$\frac{p}{2}$=$\frac{{5{x_0}}}{4}$,解得x0=2p,
又點(diǎn)M(x0,1)在C上,代入y2=2px,整理得2px0=1,解得x0=1,p=$\frac{1}{2}$,
∴p的值$\frac{1}{2}$;
(2)證明:由(1)得M(1,1),拋物線C:y2=x,
當(dāng)直線l經(jīng)過點(diǎn)Q(3,-1)且垂直于x軸時,此時A(3,$\sqrt{3}$),B(3,-$\sqrt{3}$),
則直線AM的斜率kAM=$\frac{\sqrt{3}-1}{2}$,直線BM的斜率kBM=$\frac{-\sqrt{3}-1}{2}$,
∴kAM•kBM=$\frac{\sqrt{3}-1}{2}$×$\frac{-\sqrt{3}-1}{2}$=-$\frac{1}{2}$.
當(dāng)直線l不垂直于x軸時,設(shè)A(x1,y1),B(x2,y2),
則直線AM的斜率kAM=$\frac{{y}_{1}-1}{{x}_{1}-1}$=$\frac{{y}_{1}-1}{{y}_{1}^{2}-1}$=$\frac{1}{{y}_{1}+1}$,同理直線BM的斜率kBM=$\frac{1}{{y}_{2}+1}$,
kAM•kBM=$\frac{1}{{y}_{1}+1}$•$\frac{1}{{y}_{2}+1}$=$\frac{1}{{y}_{1}{y}_{2}+{y}_{1}{+y}_{2}+1}$,設(shè)直線l的斜率為k(k≠0),且經(jīng)過Q(3,-1),則直線l的方程為y+1=k(x-3),
聯(lián)立方程$\left\{\begin{array}{l}{y+1=k(x-3)}\\{{y}^{2}=x}\end{array}\right.$,消x得,ky2-y-3k-1=0,
∴y1+y2=$\frac{1}{k}$,y1•y2=-$\frac{3k+1}{k}$=-3-$\frac{1}{k}$,
故kAM•kBM=$\frac{1}{{y}_{1}{y}_{2}+{y}_{1}{+y}_{2}+1}$=$\frac{1}{-3-\frac{1}{k}+\frac{1}{k}+1}$=-$\frac{1}{2}$,
綜上,直線AM與直線BM的斜率之積為-$\frac{1}{2}$.

點(diǎn)評 本題考查拋物線的標(biāo)準(zhǔn)方程,直線與拋物線的位置關(guān)系,考查直線的斜率公式及韋達(dá)定理的綜合應(yīng)用,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知A,B分別為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右頂點(diǎn),不同兩點(diǎn)P,Q在雙曲線上,且關(guān)于x軸對稱,設(shè)直線AP,BQ的斜率分別為k1,k2,當(dāng)$\frac{2b}{a}+\frac{a}-\frac{1}{{2{k_1}{k_2}}}+ln|{k_1}|+ln|{k_2}|$取最小值時,雙曲線C的離心率為(  )
A.$\sqrt{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列各進(jìn)制數(shù)中,最小的是( 。
A.85(3)B.210(6)C.1 000(4)D.111 111(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知關(guān)于x的方程x2+mx+m2-3=0的實(shí)數(shù)根分別為x1,x2,且x1<1<x2,實(shí)數(shù)m的取值范圍是集合G.
(1)求G;
(2)若存在m∈G,x∈{1,4},使得x12+x22=x+a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)點(diǎn)P,Q分別是曲線y=xe-2x和直線y=x+2上的動點(diǎn),則P,Q兩點(diǎn)間的距離的最小值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某中學(xué)舉辦多學(xué)科實(shí)踐活動,高二1班共有50名同學(xué),其中30名參加了數(shù)學(xué),26名參加了物理,15名同時參加了數(shù)學(xué)和物理,問這個班既沒參加數(shù)學(xué)也沒參加物理的有9人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù) f(x)=lnx+$\frac{m}{x}$,m∈R
(1)當(dāng)m=1時,求f(x)的極值;
(2)若對任意b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立,求 m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.把一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,則方程組$\left\{\begin{array}{l}{ax+by=3}\\{2x+4y=7}\end{array}\right.$只有一組解的概率為( 。
A.$\frac{11}{12}$B.$\frac{1}{12}$C.$\frac{1}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={x∈R|ax2+2x+1=0},其中a∈R.
(1)若$\frac{1}{2}$∈A,用列舉法表示A;
(2)若A中有且僅有一個元素,求a的值組成的集合B.

查看答案和解析>>

同步練習(xí)冊答案