在直角坐標(biāo)系中,A (3,0),B (0,3),C
(1)若^,求的值;
(2)能否共線?說(shuō)明理由。

(1)=;(2)不能共線。得=>1,矛盾!

解析試題分析:,        1分
(1)Þ                                2分
Þ
Þ                                     4分
兩邊平方得  1+= 得=                   6分
(2)不能共線。                                          8分
理由如下:
、共線,則有 
解得                                      10分
兩邊平方得  1+= 得=>1,矛盾!                12分
考點(diǎn):本題主要考查平面向量的坐標(biāo)運(yùn)算、數(shù)量積,向量垂直及共線的條件,和差倍半的三角函數(shù)公式。
點(diǎn)評(píng):中檔題,本題綜合考查平面向量的坐標(biāo)運(yùn)算、數(shù)量積,向量垂直及共線的條件,和差倍半的三角函數(shù)公式。總的看解答思路明確,注重了基礎(chǔ)知識(shí)的考查,是一道好題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,滿足:的中點(diǎn).
(1)若,求向量與向量的夾角的余弦值;
(2)若點(diǎn)邊上一點(diǎn),,且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,且的夾角為120°.
求:(1)  ;         (2) ;       (3) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量
(1)若點(diǎn)三點(diǎn)共線,求應(yīng)滿足的條件;
(2)若為等腰直角三角形,且為直角,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知點(diǎn)和點(diǎn),其中,若,求得值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知平面向量,,
(1)當(dāng)時(shí),求的取值范圍;
(2)若的最大值是,求實(shí)數(shù)的值;
(3)(僅理科同學(xué)做,文科同學(xué)不做)若的最大值是,對(duì)任意的,都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知△ABC中,A(2,4),B(-1,-2),C(4,3),BC邊上的高為AD.
⑴求證:AB⊥AC;
⑵求點(diǎn)D與向量的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知||=3,||=2,且3+5與4-3垂直,求的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知均為單位向量,它們的夾角為,那么等于

A.B.C.D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案